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Abstract

In this work, we consider the one dimensional very singular fourth-order equation for solid-on-solid 
model in attachment-detachment-limit regime with exponential nonlinearity

ht = ∇ · ( 1

|∇h|∇e
δE
δh ) = ∇ · ( 1

|∇h|∇e
−∇·( ∇h

|∇h| ))

where total energy E = ∫ |∇h| is the total variation of h. Using a logarithmic correction for total energy 
E = ∫ |∇h| ln |∇h| dx and gradient flow structure with a suitable defined functional, we prove the one 
dimensional evolution variational inequality solution preserves a positive gradient hx which has upper and 
lower bounds but in BV space. We also obtain the global strong solution to the solid-on-solid model which 
allows an asymmetric singularity h+

xx to happen.
© 2019 Elsevier Inc. All rights reserved.

Keywords: Gradient flow; Characterization of sub-differential; Radon measure; Latent singularity

E-mail address: yuangao@math.duke.edu.
https://doi.org/10.1016/j.jde.2019.05.011
0022-0396/© 2019 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2019.05.011
http://www.elsevier.com/locate/jde
mailto:yuangao@math.duke.edu
https://doi.org/10.1016/j.jde.2019.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2019.05.011&domain=pdf


4430 Y. Gao / J. Differential Equations 267 (2019) 4429–4447
1. Introduction

1.1. Background

Epitaxial growth on crystal surface is an important nanoscale phenomena which has attracted 
lots of attention due to its application in industry and in manufacture of some typical experimental 
materials. We refer to [17,27] for more physical description.

In this paper, we focus on dynamic process for solid on solid (SOS) model on crystal surface, 
where adatoms detach from above, diffuse on the substrate and then are absorbed at another posi-
tion. There are some researches on the SOS model from microscopic viewpoint and derivation of 
continuum limit from mesoscopic level; see [4,7,18,24,28]. The kinetic process can also be de-
scribed using macroscopic variable, height profile h(x, t) of a solid film. Here we directly write 
down the evolution equation for surface height h(x, t) using conservation law of mass

ht + ∇ · J = 0,

where

J = −M(∇h)∇ρs

is the adatom flux by Fick’s law [24], the mobility function M(∇h) is a functional of ∇h and ρs

is the local equilibrium density of adatoms. By the Gibbs-Thomson relation [19,25,24], which is 
connected to the theory of molecular capillarity, the corresponding local equilibrium density of 
adatoms is given by

ρs = ρ0e
μ
kT ,

where ρ0 is a constant reference density, T is the temperature, k is the Bolzmann constant and μ
is the chemical potential.

Now we consider the expression of the chemical potential μ, the rate of change in the surface 
energy per atom. For a physical constant L, we impose one dimensional screw periodic boundary 
condition for simplicity, i.e.

h(x + L) = h(x) + 1 for a.e. x ∈R, (1.1)

which means hx is L-periodic. Denote the domain for one period as T := [0, L). The general 
total energy for epitaxial growth is

E = 1

p

∫
T

|∇h|p dx (1.2)

for some p ≥ 1 and the corresponding chemical potential is

μ = δE = −∇ · (|∇h|p−2∇h). (1.3)

δh
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Hence the general evolution equation becomes

ht = ∇ ·
(
M(∇h)∇e

μ
KT

)
= ∇ ·

(
M(∇h)∇e−∇·(|∇h|p−2∇h)

)
, (1.4)

where the mobility M(∇h) is a constant in diffusion-limit (DL) regime, while the mobility 
M(∇h) = 1

|∇h| in the attachment-detachment-limit (ADL) regime; see [7,9,18,20,24,26] and the 
references in there.

Difficulties and references in the continuum framework. In the previous researches, the ex-
ponential form of chemical potential eμ/kT is regarded as linear in chemical potential eμ/kT ≈
1 + μ/kT under the hypothesis |μ| � kT . When p > 1, we refer to [1,6,9,10,23] for analytical 
results including existence, uniqueness and long time behaviors in DL regime and ADL regime. 
General speaking, the ADL model is harder than DL model due to the singular mobility 1

|∇h|
so the global monotone solution is understood in almost everywhere sense in [9,10]. For the 
case p = 1, the total energy and chemical potential become the total variation of h (see physical 
derivation from microscopic viewpoint by bond counting in [22]), i.e.

E =
∫
T

|∇h|, μ = δE

δh
= −∇ · ( ∇h

|∇h| ). (1.5)

After linearization, this kind of fourth-order singular equation in DL regime is regarded as H−1

gradient flow for the BV seminorm 
∫ |∇h|. The discontinuous solution is studied in [12] and the 

flattening effect in finite time is proved in [13]; see also [14,15] for further development in H−s

space and other boundary conditions. However, the method therein works only for DL regime 
whose mobility is a constant and the evolution in ADL regime is still an open question for p = 1. 
More recently, the original exponential equation (1.4) in DL regime is studied in [8,22,16] for 
p = 2 and in [30] for p ∈ (1, 2], where the existence of strong solution with latent singularity and 
global solution starting from small data are established. For p = 1 in DL regime, [21] constructs 
a explicit solution to demonstrate the asymmetry of height profile due to the exponential effect. 
No matter with or without linearization, those methods in DL regime for p = 1 more or less rely 
on the total variation flow structure of the PDE so it fails to work for ADL regime. To our best 
knowledge, there is no result for the evolution equation in ADL regime with p = 1

ht = ∇ · (M(h)∇e
μ

KT ) = ∇ · ( 1

|∇h|∇e
−∇·( ∇h

|∇h| )), (1.6)

which is a very singular fourth order equation with exponential nonlinearity.

Logarithmic correction and explanation from mesoscopic view. From the mesoscopic view 
we can regard the surface evolution equation as continuum limit of discrete Burton-Cabrera-
Frank (BCF) model [3,7,9], which tracks the dynamics of positions of each step xi with height 
hi = href + i

N
. Here N is the number of steps in one period and will go to +∞ in the continuum 

limit. In ADL regime, the dynamics of xi can be expressed by

dxi = N
[
(fi+1 − fi) − (fi − fi−1)

]
, i = 1, · · · ,N, (1.7)
dt
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with only repulsive interaction between the nearest step

fi := −
(

1

xi+1 − xi

− 1

xi − xi−1

)
= ∂Ei

∂xi

,

which is actually the dominated elastic interaction [29] in BCF step model depending on the 
distance between steps. Then the corresponding discrete energy is

Ei = 1

2

N∑
i=1

∑
|j−i|=1

ln|xi − xj |.

The corresponding continuum interaction function f in the limit PDE is f = −∇(ln |∇h|) (see 
detailed consistent check in [7]). This inspires us that we shall use a logarithmic factor to adjust 
the total energy for the case of p = 1. Therefore, we take the total energy with logarithmic 
correction as

E(h) :=
∫

|∇h| ln |∇h|dx, μ := δE(h)

δh
= −∇ ·

( ∇h

|∇h| (ln |∇h| + 1)
)
. (1.8)

This kind of logarithmic correction is also used for the linearized surface evolution equation 
in [11] since the logarithmic correction is negligible for small surface gradients. The surface 
height equation turns out to be

ht = ∇ · (M(h)∇e
μ

KT ) = ∇ ·
( 1

|∇h|∇e
−∇·( ∇h

|∇h| (ln |∇h|+1)
))

. (1.9)

Results and methods. In this paper, we start with the simplest situation: one dimensional case 
with monotone initial data, i.e. ∂xh0 > 0. If we can prove hx > 0 for all the time, then we obtain 
a mathematical validation for surface height equation (1.9), i.e.

ht = ∇ · (M(h)∇eμ) =
(

1

hx

(e−(ln hx)x )x

)
x

(1.10)

with μ = δE(h)
δh

= −(lnhx)x . Specifically, we investigate the existence and uniqueness of the 
evolution variational inequality (EVI) solution and monotone strong solution to (1.9) with a 
monotone initial data; see Theorem 2.5 and Theorem 3.1 separately. We first observe the L2 gra-
dient flow structure by defining a proper, lower semi-continuous convex functional φ. However 
due to the asymmetric effect brought by exponential nonlinearity [21], we shall allow a latent sin-
gularity for hxx and define the convex functional only on the absolutely continuous part of hxx ; 
see rigorous definition in (2.4). Then thanks to the detailed properties for the convex functional 
φ and the bound for hx provided by one dimensional BV space, we can apply the gradient flow 
method in metric space [2] to obtain the EVI solution h whose gradient is in BV space and 
has upper/lower bound. To further explore the strong solution with latent singularity to (1.10)
in the sense that the equation holds almost everywhere (see Definition 2), we carefully charac-
terize the sub-differential of φ by first carry on the calculations in some dense set then prove 
the sub-differential ∂φ is single-valued; see Theorem 3.1. We call the singular part of (lnhx)x
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as latent singularity because the singularity does not destroy the evolution of the solution but it 
is not removable and leads to asymmetry behaviors for convex/concave parts of h [21]. In the 
end, the notion of strong solution to this singular PDE (1.10) is understood in the sense that the 
equation holds almost everywhere after removing the singular part of (lnhx)x . That is to say, the 
singular PDE can be understood as a limit of a regularized problem for all time although there is 
a singularity at finite time.

1.2. Gradient flow in L2(T )

Let us first define formally a convex functional with some formal observations and recast 
(1.10) into a L2(T ) gradient flow. Let φ be

φ(h) :=
∫
T

e−(ln hx)x dx. (1.11)

The variation of φ is

δφ

δh
= −

( 1

hx

(
e−(ln hx)x

)
x

)
x

and then formally we have

ht = −δφ

δh
. (1.12)

To study the monotone strong solution to (1.10), we plan to apply the gradient flow theory in 
metric space L2(T ). We will define φ(h) rigorously later in (2.4). First, we need to clarify the 
working space associated with proper topology. Let us first see some inspiring observations.

Observation 1 (Conservation laws). Thanks to the screw periodic assumption (1.1), we have

d

dt

∫
T

hdx = 0, (1.13)

which implies 
∫
T h dx = ∫

T h0 dx. Moreover from

∫
T

hxx dx = 0

we know ∫
T

(hxx)
+ dx =

∫
T

(hxx)
− dx. (1.14)

Here (hxx)
− is the negative part of hxx and (hxx)

+ is the positive part of hxx . In fact, the notation 
of integration is just formal for now and we will see (hxx)

+ could be Radon measure later.
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Observation 2 (Dissipation inequalities). From the gradient flow structure (1.12),

dφ

dt
=

∫
T

δφ

δh
ht dx = −

∫
T

∣∣δφ
δh

∣∣2 dx = −
∫
T

h2
t dx ≤ 0, (1.15)

which gives the observation

φ(u(t)) ≤ φ(u(0)) for any t ≥ 0.

Therefore we obtain uniform estimate∫
T

((lnhx)x)
− dx ≤

∫
T∩((ln hx)x)−>0

e((ln hx)x)− dx ≤
∫
T

e((ln hx)x)−−((ln hx)x)+ dx

=
∫
T

e−(ln hx)x dx = φ(h(t)) ≤ φ(h(0)),

where ((lnhx)x)
− denotes the negative part of (lnhx)x and ((lnhx)x)

+ is the positive part of 
(lnhx)x . Thanks to the screw periodic assumption (1.1), we have

1

2
‖(lnhx)x‖L1(T ) = ‖((lnhx)x)

−‖L1(T ) = ‖((lnhx)x)
+‖L1(T ) ≤ φ(h(0)). (1.16)

However, since L1 is non-reflexive Banach space, the uniform bound of L1 norm does not prevent 
(lnhx)x being a Radon measure. This gives us the idea to carry on all the calculations in BV 
space, i.e. lnhx ∈ BV (T ); see explicit definitions in Section 2.

Outlines. The rest of this paper is organized as follows. We will define functional φ and estab-
lish the gradient flow structure rigorously in Section 2.1 and Section 2.2. Then after exploring 
some properties of φ in Section 2.3, we will prove the existence of EVI solution in Section 2.4. 
Section 3 is devoted to obtain the strong solution with latent singularity to (1.10).

2. Variational inequality solution

2.1. Preliminaries

We first introduce the spaces we will work in. Notice the invariant property of (1.10) if we 
add a constant c to solution h and (1.1). Therefore without loss of generality, we consider h with 
mean value zero. Let

H :=
⎧⎨
⎩u ∈ L2(T );

∫
T

udx = 0

⎫⎬
⎭ , (2.1)

endowed with the standard scalar product 〈u, v〉H := ∫
T uv dx. Here u ∈ L2(T ) means u ∈

L2(0, L) satisfies the screw periodic boundary condition (1.1).
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As in the Observation 2, since L1 is not reflexive Banach space and has no weak compactness, 
we work in a larger space, BV space. Denote M as the space of finite signed Radon measures 
and ‖ · ‖M(T ) as the total variation of the measure. Define Banach space

V := {u ∈ H ;ux ∈ BV (T )}. (2.2)

Endow V with the norm

‖u‖V := ‖u‖L2(T ) + ‖uxx‖M(T ),

which is equivalent to the norm ‖uxx‖M(T ) due to Poincaré’s inequality for mean value zero 
function.

Next, from Observation 2 we expect lnhx ∈ BV (T ) ↪→ L∞(T ), which implies there will be a 
lower/upper bound for hx . Therefore we expect there are constants c1, c2 such that c1 ≤ hx ≤ c2. 
Then the uniform estimate

‖(lnhx)x‖M(T ) = ∥∥hxx

hx

∥∥
M(T )

≤ φ(h(0))

will lead to a uniform bound for ‖hxx‖M(T ). Since hxx can be a Radon measure, we need to 
make those formal observations rigorous in Section 1.2 by first defining φ properly. Notice for 
any μ ∈M, from [5, p. 42], we have the decomposition

μ = μ‖ + μ⊥ (2.3)

with respect to the Lebesgue measure, where μ‖ ∈ L1(T ) is the absolutely continuous part of μ
and μ⊥ is the singular part, i.e., the support of μ⊥ has Lebesgue measure zero. Define the beam 
type functional

φ : H → [0,+∞],

φ(h) :=
{∫

T e
−((ln hx)x)+‖ +((ln hx)x)− dx, if h ∈ V, and ((lnhx)x)

− � L1,

+∞ otherwise.
(2.4)

Here ((lnhx)x)‖ denotes the absolutely continuous part of (lnhx)x , ((lnhx)x)
− is the negative 

part of (lnhx)x and ((lnhx)x)
+ is the positive part of (lnhx)x such that ((lnhx)x)

± are two non-
negative measures and (lnhx)x = ((lnhx)x)

+ −((lnhx)x)
−. We call the singular part ((lnhx)x)

+
⊥

latent singularity in solution h.
In view of the a priori estimate on the mass of the measure hxx , we introduce the indicator 

function

ψ : H → {0,+∞}, ψ(h) :=
{

0 if h ∈ V, ‖hxx‖M(T ) ≤ C∗,
+∞ otherwise.

(2.5)

Here C∗ is a fixed constant, which is determined in (2.27) by the initial datum later.
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2.2. Euler scheme

Even if (1.10) has a nice variational structure, and V has Banach space structure. To avoid 
the technical difficulties brought by non-reflexivity we adopt the result [2, Theorem 4.0.4] by 
Ambrosio, Gigli and Savaré. After defining the energy functionals rigorously, the key process 
is to study the detailed properties of energy functionals. First let us establish the gradient flow 
evolution in the metric space (H, dist), with distance dist(u, v) := ‖u − v‖H . Let h0(x) ∈ H be 
a given initial datum and 0 < τ � 1 be a given parameter. We consider a sequence {xτ

n} which 
satisfies the following unconditional-stable backward Euler scheme

⎧⎨
⎩ x

(τ)
n ∈ argminx′∈H

{
(φ + ψ)(x′) + 1

2τ
‖x′ − x

(τ)
n−1‖2

H

}
, n ≥ 1,

x
(τ)
0 := h0 ∈ H.

(2.6)

The existence and uniqueness of the sequence {xτ
n} can be proved by direct method in calculus of 

variation after we establishing the convexity and lower semi continuity of φ + ψ in Lemma 2.1; 
see also [8, Prop. 11]. Thus we consider the gradient descent with respect to φ + ψ in the space 
(H, dist).

Now for any 0 < τ � 1 we define the resolvent operator (see [2, p. 40])

Jτ [h] := argminv∈H

{
(φ + ψ)(v) + 1

2τ
‖v − h‖2

H

}
,

then the variational approximation of h at t is obtained by Euler scheme (2.6) as

hn(t) := (Jt/n)
n[h0]. (2.7)

In Proposition 2.4, we will use the theory for gradient flow in metric space [2, Theorem 4.0.4] to 
establish the convergence of the variational approximation hn(t) to variational inequality solution 
to (1.10), which is defined below.

Definition 1. Given initial data h0 ∈ H , we call h : [0, +∞) → H a variational inequality solu-
tion to (1.10) if h(t) is a locally absolutely continuous curve such that limt→0 h(t) = h0 in H
and

〈ht (t), h(t) − v〉H ′,H ≤ φ(v) − φ(h(t)) for a.e. t > 0, ∀v ∈ D(φ + ψ). (2.8)

Next we study some properties, including convexity and lower semi continuity in H , of the 
functional φ + ψ .

2.3. Convexity and lower semi continuity of function φ + ψ in H

Before we prove the convexity and lower semi continuity of function φ + ψ , we first state an 
important lemma concerning the weak lower semi continuity of φ in BV space.
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Proposition 2.1. Let hn, h ∈ V . If (lnhnx)x
∗
⇀(lnhx)x in M(T ), we have

lim inf
n→+∞φ(hn) ≥ φ(h). (2.9)

Proof. Denote μn := (lnhnx)x , μ := (lnhx)x . Notice that φ defines only on the absolutely con-
tinuous part of (lnhx)x . Since φ is convex functional by Lemma 2.2, so the inequality (2.9) is 
straightforward if the absolutely continuous part (resp. singular part) converges still to absolutely 
continuous part (resp. singular part). Thus the key point is to clarify the following two cross-
convergence cases. (i) The absolutely continuous part of μn converges to the singular part of μ; 
and (ii) the singular part of μn converges to the absolutely continuous part of μ. For case (ii), 
notice φ is decreasing with respect to μ‖, which implies the limit φ(h) will be smaller with the
additional absolutely continuous part. For case (i), delicate estimates using cut-off function is 
applied to show the loss in φ due to the additional singular part turns out to have a infinitely 
small contribution. We refer to [8, Proposition 5] for the detailed proofs of these two cases. �

Next we will prove the convexity and lower semi continuity of function φ + ψ in H .

Lemma 2.2. The sum φ + ψ : H → [0, +∞] is proper, convex, lower semicontinuous in H and 
satisfies coercivity defined in [2, (2.4.10)].

Proof. Clearly since the typical function h = Lx ∈ D(φ + ψ), so D(φ + ψ) = {φ + ψ < +∞}
is nonempty and φ + ψ is proper. Due to the positivity of φ, ψ , coercivity [2, (2.4.10)], i.e., 
∃u∗ ∈ D(φ + ψ), r∗ > 0 such that inf{(φ + ψ)(v) : v ∈ H, dist(v, u∗) ≤ r∗} > −∞, is obvious.

Convexity. Note that since both φ, ψ ≥ 0, we have D(φ+ψ) = D(φ) ∩D(ψ). Given u, v ∈ H , 
t ∈ (0, 1), without loss of generality we assume u, v ∈ D(φ +ψ), otherwise convexity inequality 
is trivial. Therefore the measure (1 − t)(lnux)x + t (lnvx)x has no negative singular part, while 
its positive singular part satisfies

[(1 − t)(lnux)x + t (lnvx)x]+⊥ = [(1 − t)(lnux)x]+⊥ + [t (lnvx)x]+⊥,

and its absolutely continuous part satisfies

[(1 − t)(lnux)x + t (lnvx)x]‖ = [(1 − t)(lnux)x]‖ + [t (lnvx)x]‖.

Thus we have

φ((1 − t)u + tv) =
∫
T

e
−[(

ln[(1−t)ux+tvx ])x ]‖ dx

≤
∫
T

e
−[

(1−t)(ln ux)x+t (ln vx)x
]
‖ dx

=
∫

e
−(1−t)

[
(ln ux)x

]
‖−t

[
(ln vx)x

]
‖ dx
T
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≤ (1 − t)

∫
T

e
−[

(ln ux)x
]
‖ dx + t

∫
T

e
−[

(ln vx)x
]
‖ dx

= (1 − t)φ(u) + tφ(v),

where we used the convexity of − lnx and e−x in the two inequalities separately. Hence φ + ψ

is convex.
Lower semicontinuity. Consider a sequence hn → h in H . We need to check

(φ + ψ)(h) ≤ lim inf
n

(φ + ψ)(hn).

If hn ∈ D(φ + ψ) does not hold for all large n, then lower semicontinuity holds. Without loss of 
generality, we can assume hn ∈ D(φ + ψ) for all n, and also

lim inf
n

(φ + ψ)(hn) = lim
n

(φ + ψ)(hn).

First notice hn ∈ D(φ) for any n implies

∫
T

((lnhnx)x)
− dx ≤

∫
T∩((ln hnx)x)−>0

e((ln hnx)x)− dx ≤
∫
T

e
((ln hnx)x)−−((ln hnx)x)+‖ dx

=φ(hn(t)) ≤ C.

Then similar to (1.16), we have

1

2
‖(lnhnx)x‖M(T ) = ‖((lnhnx)x)

−‖M(T ) = ‖((lnhnx)x)
+‖M(T ) ≤ C, (2.10)

which yields that there exists μ ∈M(T ) such that (lnhnx)x
∗
⇀μ in M(T ).

Second, since hn ∈ D(ψ), we have ‖hnxx‖M(T ) ≤ C∗. Thus strong convergence hn → h in 
H , together with the embedding BV (T ) ↪→ Lp(T ) compactly for any p < ∞, leads to the strong 
convergence hnx → hx in Lp(T ) for any p < ∞. Therefore we have hnx → hx almost every-

where and consequently lnhnx → lnhx almost everywhere. Combining this with (lnhnx)x
∗
⇀μ

in M(T ) gives μ = (lnhx)x and (lnhnx)x
∗
⇀(lnhx)x in M(T ).

Finally, since hnxx
∗
⇀hxx in M(T ), we also know h ∈ D(ψ) and 0 = ψ(hn) = ψ(h). There-

fore by Proposition 2.1 we have

lim inf
n

φ(hn) ≥ φ(h)

and the lower semicontinuity is proved. �
As long as we have the convexity of φ + ψ , the τ−1-convexity is standard and the proof can 

be found in [8, Lemma 10].
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Proposition 2.3 (τ−1-convexity). For any h, v0, v1 ∈ D(φ + ψ), there exists a curve v : [0, 1] →
D(φ + ψ) such that v(0) = v0, v(1) = v1 and the functional


(τ,h;v) := (φ + ψ)(v) + 1

2τ
‖h − v‖2

H (2.11)

satisfies τ−1-convexity, i.e.,


(τ,h;v(t)) ≤ (1 − t)
(τ,h;v0) + t
(τ,h;v1) − 1

2τ
t (1 − t)‖v0 − v1‖2

H (2.12)

for all τ > 0, t ∈ [0, 1].

2.4. Existence of variational inequality solution

After studying convexity and lower semicontinuity in last section, we shall apply the conver-
gence result in [2, Theorem 4.0.4] to derive that the discrete solution hn obtained by Euler scheme 
(2.6) converges to the variational inequality solution defined in Definition 1. For v ∈ D(φ), de-
note the local slope

|∂φ|(v) := lim sup
w→v

max{φ(v) − φ(w),0}
dist(v,w)

. (2.13)

Proposition 2.4. Given h0 ∈ H , for any t > 0, t = nτ , let hn(t) defined in (2.7) be the ap-
proximation solution obtained by Euler scheme (2.6), then there exists a local Lipschitz curve 
h(t) : [0, +∞) → H such that

hn(t) → h(t) in L2(T ) (2.14)

and h : [0, +∞) → H is the unique EVI solution in the sense that h is unique among all the 
locally absolutely continuous curves such that limt→0 h(t) = h0 in H and

1

2

d

dt
‖h(t) − v‖2 ≤ (φ + ψ)(v) − (φ + ψ)(h(t)), a.e. t > 0, ∀v ∈ D(φ + ψ). (2.15)

Moreover, we have the following regularities

(φ + ψ)(h(t)) ≤ (φ + ψ)(v) + 1

2t
‖v − h0‖2

H , ∀v ∈ D(φ + ψ), (2.16)

|∂(φ + ψ)|2(h(t)) ≤ |∂(φ + ψ)|2(v) + 1

t2 ‖v − h0‖2
H , ∀v ∈ D(|∂(φ + ψ)|). (2.17)

This Proposition is a direct result by combining [2, Theorem 4.0.4] with Proposition 2.1 and 
Proposition 2.3. Other kinds of regularity estimates can also be obtained and we refer to [8, 
Theorem 13], [2, Theorem 4.0.4] for details. Next we claim the EVI solution obtained above is 
EVI solution to (1.10) with better properties as follows.

Theorem 2.5. Given any T > 0 and initial datum h0 ∈ H such that φ(h0) < +∞,
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(i) the solution obtained in Proposition 2.4 has the following regularities

h ∈ L∞([0, T ];V ) ∩ C0([0, T ];H), ht ∈ L∞([0, T ];H),

((lnhx)x)
− � L1 for a.e. t ∈ [0, T ],

where ((lnhx)x)
− is the negative part of (lnhx)x ;

(ii) there exist constants c1, c2 > 0 depending only on h0 and will be determined in (2.25) such 
that

c1 ≤ hx ≤ c2; (2.18)

(iii) h is the EVI solution in Definition 1, i.e.

〈ht (t), h(t) − v〉H ′,H ≤ φ(v) − φ(h(t)) for a.e. t > 0, ∀v ∈ D(φ + ψ), (2.19)

and consequently we have the decay estimate

d

dt

∫
T

h2 dx ≤ 0. (2.20)

The dual pair 〈·, ·〉H ′,H is the usual integration so we just use 〈·, ·〉 in the following article. 
Recall the definition of φ in (2.4). φ(h0) < +∞ if and only if h0 ∈ V , ((lnh0

x)x)
− � Ld and ∫

T e
−((ln h0

x)x)+‖ +((ln h0
x)x)− dx < +∞.

Proof. First, we claim the functional ψ can be taken off. Indeed, from (2.16) taking v = h0 gives

(φ + ψ)(h(t)) ≤ (φ + ψ)(h0) < +∞, (2.21)

which also implies

φ(h(t)) ≤ φ(h0) < +∞ for a.e. t ∈ [0, T ]. (2.22)

Now we use (2.22) to determine those constants c1, c2 in Theorem 2.5 and C∗ in Definition 2.5. 
Notice the screw periodic boundary condition (1.1), we have 

∫
T d(hxx) = 0, and then

‖(hxx)
+‖M(T ) = ‖(hxx)

−‖M(T ) = 1

2
‖hxx‖M(T ). (2.23)

Thanks to∫
T

((lnhx)x)
− dx ≤

∫
T∩((ln hx)x)−>0

e((ln hx)x)− dx ≤
∫
T

e
((ln hx)x)−−((ln hx)x)+‖ dx

=φ(h(t)) ≤ φ(h0),
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we know ((lnhx)x)
− � L1 for a.e. t ∈ [0, T ]. Then similar to (2.23), we have

1

2
‖(lnhx)x‖M(T ) = ‖((lnhx)x)

−‖M(T ) = ‖((lnhx)x)
+‖M(T ) ≤ φ(h0). (2.24)

Due to the embedding BV (T ) ↪→ L∞(T ) in one dimension, we have

‖ lnhx‖L∞(T ) ≤ cφ(h0),

which implies

c1 := e−cφ(h0) ≤ hx ≤ ecφ(h0) =: c2 (2.25)

and (ii). Combining (2.24) and (2.25), we conclude

1

c1
‖hxx‖M(T ) ≤ ‖hxx

hx

‖M(T ) ≤ 2φ(h0). (2.26)

Therefore in Definition (2.5), we can take

C∗ := 2c1φ(h0) + 1 (2.27)

and then

ψ(h(t)) ≡ 0 ≡ ∂ψ(h(t)). (2.28)

The invariant ball introduced by indicate function ψ is similar to the idea of a priori assumption 
method, i.e. we first obtain the solution in some invariant ball ‖hxx‖M ≤ C∗, and then prove the 
invariant ball is not artificial by showing the solution always locates within the ball ‖hxx‖M ≤
C∗ − 1. Noticing also that if v ∈ D(ψ), ψ(v) = 0, so EVI (2.15) is reduced to

1

2

d

dt
‖h(t) − v‖2 ≤ φ(v) − φ(h(t)) for a.e. t > 0, ∀v ∈ D(φ + ψ).

Second, it remains to prove the ht ∈ L∞(0, T ; L2(T )). From Theorem 2.4 we know that 
t �→ h(t) is locally Lipschitz in (0, T ), i.e. for any t0 > 0 there exists M = M(t0) > 0 such that

‖h(t0 + ε) − h(t0)‖L2(T ) ≤ M(t0)ε for all ε ∈ [0, T − t0].
The key point is to obtain a uniform bound for M(t0) for arbitrary t0 ≥ 0. By exactly the same 
argument in [8, Corollary 3.1] we can further show

‖ht‖L∞(0,T ;L2(T )) ≤ |∂φ|(h0), (2.29)

which concludes (i).
Finally, from the regularity in (i) and

1 d ‖h(t) − v‖2
2(T )

= 〈ht (t), h(t) − v〉,

2 dt L
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we obtain (2.19). From (2.19), substituting v = (1 − ε)h for any ε small enough shows

〈ht (t), εh(t)〉 ≤ φ((1 − ε)h) − φ(h(t)) = 0,

where we used a constant multiplier of h does not change the value of φ. This con-
cludes (2.20). �
3. Existence of strong solution

After establishing the regularity of variational inequality solution in Section 2.4, we start to 
prove that the variational inequality solution is also a strong solution. We first clarify the def-
inition of strong solution in the sense that equation holds almost everywhere but has a latent 
singularity in the second derivatives. It is worth to mention that from Observation 2 the sin-
gularity in positive part of (lnhx)x does not destroy the evolution of the solution but it is not 
removable. Singular PDEs should be understood as a limit of some regularized problems. In our 
case, the singular PDE is understood in the sense that the equation holds almost everywhere after 
removing the singular part of (lnhx)x .

Definition 2. Given initial datum h0 ∈ H such that φ(h0) < +∞, we call function

h ∈ L∞([0, T ];V ) ∩ C0([0, T ];H), ht ∈ L∞([0, T ];H)

a strong solution to (1.10) if h satisfies

ht =
(

1

hx

(
e−((ln hx)x)‖

)
x

)
x

(3.1)

for a.e. (t, h) ∈ [0, T ] ×T with respect to Lebesgue measure, where ((lnhx)x)‖ is the absolutely 
continuous part of (lnhx)x) in the decomposition (2.3).

The definition of strong solution above follows the classical definition for strong solution to an 
abstract Cauchy problem described by the infinitesimal generator of a C0-semigroup. However 
the equation holds almost everywhere after removing the singular part of (lnhx)x . We clarify 
that the notion of strong solution is try to understand a singular PDE by removing some singular 
part, which does not destroy the dynamics over time. In other words, the singular PDE can be 
understood as a limit of a regularized problem for all time although there is a singularity at finite 
time. For instance, we are sure about the presence of a Dirac δ-function (the singularity is not 
removable) but we try to find out a way to understand e−δ.

Since we have obtained the EVI solution, the idea is to prove the sub-differential of functional 
φ is single-valued by testing EVI (2.19) with v := h ± εϕ for any function ϕ ∈ C∞(T ). Let us 
state the main existence theorem as follows.

Theorem 3.1. Given T > 0, initial datum h0 ∈ H such that φ(h0) < +∞, then EVI solution h
obtained in Theorem 2.5 is also a strong solution to (1.10), i.e.,

ht =
(

1 (
e−((ln hx)x)‖

) )
(3.2)
hx x x



Y. Gao / J. Differential Equations 267 (2019) 4429–4447 4443
for a.e. (t, h) ∈ [0, T ] × T with respect to Lebesgue measure. Besides, we have the following 
dissipation inequality

φ(h(t)) =
∫
T

e−((ln hx)x)‖ dx ≤ φ(h0), t ≥ 0, (3.3)

where ((lnhx)x)‖ is the absolutely continuous part of (lnhx)x) in the decomposition (2.3).

Proof. The general idea is to characterize the sub-differential of functional φ by testing 
EVI (2.19) with v := h ± εϕ for any function ϕ ∈ C∞(T ) and then taking limit ε → 0. In order 
to pass the limit, we should first obtain some integrability results in Step 1 and then calculate 
the sub-differential of φ in Step 2. Here we only prove the integrability for some dense subset of 
C∞(T ) which will be enough for the calculation in Step 2. Indeed, we will take advantage that if 
we can obtain Gâteaux-derivative on some dense subset then the sub-differential is single-valued 
and equals the Gâteaux-derivative.

Step 1. Integrability results.
Assume h(t) is EVI solution obtained in Theorem 2.5. To ensure we can take limit after testing 

EVI with v := h ± εϕ, we need to prove

e−((ln hx)x)‖ ∈ L1(T ) (3.4)

and

e
−[

(ln(hx+εϕx))x
]
‖ ∈ L1(T ) (3.5)

for ε small enough and ϕ in some dense set of C∞
b (T ). First from (2.22) we know φ(h(t)) ≤

φ(h0), which gives (3.3) and (3.4).
Next, we prove (3.5) for ϕ in some dense set of C∞

b (T ). For any c > 0, define

Dc := {ϕ ∈ C∞
b (T ); |(hxx)‖ϕx | ≤ c}; D := ∪c≥0Dc. (3.6)

We claim the set D is dense in L∞(T ). Indeed, for any ϕ ∈ L∞(T ) define

ϕn :=
{

ϕ if |(hxx)‖ϕx | ≤ n;
0 otherwise.

Then for any 1 ≤ p < ∞,

‖ϕn − ϕ‖Lp(T ) =
⎛
⎜⎝ ∫

{|(hxx)‖ϕx |>n}
|ϕn − ϕ|p dx

⎞
⎟⎠

1
p

.

Since |(hxx)‖ϕx | ≤ |(hxx)‖|‖ϕx‖L∞ ,

{|(hxx)‖ϕx | > n} ⊆ {|(hxx)‖|‖ϕx‖L∞ > n}.
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Therefore

‖ϕn − ϕ‖Lp(T ) ≤

⎛
⎜⎜⎝

∫
{|(hxx)‖|> n

‖ϕx‖L∞ }
|ϕn − ϕ|p dx

⎞
⎟⎟⎠

1
p

≤ ‖ϕ‖L∞
∣∣∣{|(hxx)‖| > n

‖ϕx‖L∞

}∣∣∣ 1
p → 0

as n → ∞, where we used the integrability (hxx)‖ ∈ L1(T ). Therefore we know D is dense in 
L∞ and thus D is dense in C∞

b (T ).
For any ϕ ∈ D, |ϕxx | ≤ ‖ϕxx‖L∞ and there exists some c0 such that |(hxx)‖ϕx | ≤ c0. Notice 

also c1 ≤ hx ≤ c2 due to (2.18). Hence for ε small enough,

∫
T

e
−(

(ln(hx+εϕx))x
)
‖ dx =

∫
T

e
−
[

hxx+εϕxx
hx+εϕx

]
‖ dx

=
∫
T

e
− (hxx )‖

hx+εϕx e
−ε

ϕxx
hx+εϕx dx

≤C(c1, c2,‖ϕ‖W 2,∞)

⎡
⎢⎣ ∫
((hxx)‖)+>0

e
− (hxx )‖

hx+εϕx dx +
∫

((hxx)‖)+=0

e
− (hxx )‖

hx+εϕx dx

⎤
⎥⎦

≤C(c1, c2,‖ϕ‖W 2,∞) + C(c1, c2,‖ϕ‖W 2,∞)

∫
((hxx)‖)+=0

e
− (hxx )‖

hx
(1+ε

|ϕx |
hx

) dx.

Here for the first term in the last inequality we used e−τ < 1 for τ > 0. For the second term in 
the last inequality, we used when ((hxx)‖)+ = 0,

− (hxx)‖
hx

1

1 + ε
ϕx

hx

≤ − (hxx)‖
hx

(
1 + 2ε

|ϕx |
hx

)

due to 1
1+εy

≤ 1 + 2ε|y| for any ε < 1
2 max |y| . Therefore

∫
T

e
−(

(ln(hx+εϕx))x
)
‖ dx

≤C(c1, c2,‖ϕ‖W 2,∞) + C(c1, c2,‖ϕ‖W 2,∞)

∫
((h ) )+=0

e
− (hxx )‖

hx
(1+2ε

|ϕx |
hx

) dx
xx ‖
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≤C(c1, c2,‖ϕ‖W 2,∞) + C(c1, c2,‖ϕ‖W 2,∞)

∫
((hxx)‖)+=0

e
− (hxx )‖

hx e
−2ε

(hxx )‖|ϕx |
h2
x dx

≤C(c1, c2,‖ϕ‖W 2,∞) + C(c0, c1, c2,‖ϕ‖W 2,∞)

∫
T

e
− (hxx )‖

hx dx,

where we used |(hxx)‖ϕx | ≤ c0 in the last inequality and C(c0, c1, c2, ‖ϕ‖W 2,∞) is a generic 
constant depending only on c0, c1, c2, ‖ϕ‖W 2,∞ . This, together with (3.4) leads to (3.5).

Step 2. Testing (2.19) with v = h ± εϕ.
First we show v ∈ D(φ + ψ). Since ϕ ∈ C∞

b (T ) and (2.18), we can choose ε small enough 
such that hx + εϕx > 0, so by definition of φ and (hxx + εϕxx)

− ∈ L1 we have v ∈ D(φ). It 
is sufficient to show v ∈ D(ψ) for ε small enough. Indeed, from (2.26) we know ‖hxx‖M ≤
2c1φ(h0) = C∗ − 1. Hence we choose ε small enough such that ε ≤ 1

2‖ϕ‖
W2,∞ , which implies 

‖v‖M ≤ 2c1φ(h0) + 1
2 < C∗ and ψ(v) = 0.

Plugging v = h + εϕ into (2.19) gives

0 ≤〈ht (t), εϕ〉 + φ(h(t) + εϕ) − φ(h(t))

=ε〈ht (t), ϕ〉 +
∫
T

e
−
[

hxx+εϕxx
hx+εϕx

]
‖ − e

− (hxx )‖
hx dx. (3.7)

We divide this by ε > 0 and take limit ε → 0+. Thanks to the dominated convergence theorem 
and the integrability (3.5), we just need to check the pointwise limit for the integrand in the 
dense set D. Notice again c1 ≤ hx ≤ c2 due to (2.18) and thus ϕx

hx
are uniformly bounded. For 

any x ∈ T , ϕ ∈ D, we have

1

ε

[
e
−( hxx+εϕxx

hx+εϕx

)
‖ − e

− (hxx )‖
hx

]

=1

ε

[
e
− (hxx )‖+εϕxx

hx (1+ε
ϕx
hx

) − e
− (hxx )‖

hx

]

=1

ε

[
e
− (hxx )‖+εϕxx

hx
[1−ε

ϕx
hx

+O(ε2)] − e
− (hxx )‖

hx

]

=1

ε

[
e
− (hxx )‖

hx
−ε

ϕxx
hx

+ε
(hxx )‖

hx

ϕx
hx

+O(ε2) − e
− (hxx )‖

hx

]

=1

ε
e
− (hxx )‖

hx
−ε

ϕxx
hx

+ε
(hxx )‖

hx

ϕx
hx

+O(ε2)[1 − e
ε

ϕxx
hx

−ε
(hxx )‖

hx

ϕx
hx

+O(ε2)]
≤1

ε
e
− (hxx )‖

hx
−ε

ϕxx
hx

+ε
(hxx )‖

hx

ϕx
hx

+O(ε2)[− ε
ϕxx

hx

+ ε
(hxx)‖

hx

ϕx

hx

+ O(ε2)
]

→e
− (hxx )‖

hx

[
− ϕxx

hx

+ (hxx)‖
hx

ϕx

hx

]
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as ε → 0+, where we used 1 − ex ≤ −x for all x ∈ R in the inequality. Then taking limit in (3.7)
yields

〈ht , ϕ〉 + lim
ε→0

1

ε

∫
T

[
e
−
[

hxx+εϕxx
hx+εϕx

]
‖ − e

− (hxx )‖
hx

]
dx

=〈ht , ϕ〉 +
∫
T

e
− (hxx )‖

hx

[
− ϕxx

hx

+ (hxx)‖
hx

ϕx

hx

]
dx ≥ 0

for any ϕ ∈ D. Repeating the above arguments with v = h − εϕ gives

〈ht , ϕ〉 +
∫
T

e
− (hxx )‖

hx

[
− ϕxx

hx

+ (hxx)‖
hx

ϕx

hx

]
dx ≤ 0.

Then we finally obtain

∫
T

htϕ + e
− (hxx )‖

hx

[
− ϕxx

hx

+ (hxx)‖
hx

ϕx

hx

]
dx = 0. (3.8)

By the dense argument for Gâteaux-derivative, this equality holds for any ϕ ∈ C∞
b (T ).

Now we integrate by parts for 
∫
T − 1

hx
e
− (hxx )‖

hx ϕxx dx. By the Radon-Nikodym theorem, (3.8)
is reduced to

∫
T

htϕ +
[

1

hx

[(
e
− (hxx )‖

hx

)
x

]
‖
+ 1

hx

[(
e
− (hxx )‖

hx

)
x

]
⊥

− (hxx)⊥
h2

x

e
− (hxx )‖

hx

]
ϕx dx = 0.

Therefore

ht −
[

1

hx

[(
e
− (hxx )‖

hx

)
x

]
‖
+ 1

hx

[(
e
− (hxx )‖

hx

)
x

]
⊥

− (hxx)⊥
h2

x

e
− (hxx )‖

hx

]
x

= 0

in (C∞
b (T ))′, which leads to

ht −
[

1

hx

(
e
− (hxx )‖

hx

)
x

]
x

= 0

for a.e. (t, x) ∈ [0, T ] × T with respect to Lebesgue measure and concludes h is a strong solu-
tion. �
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