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A note on parametric Bayesian inference via
gradient flows
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In this note, we summarize several recent developments for efficient
sampling methods for parameters based on Bayesian inference. To
reformulate those sampling methods, we use different formulations
for gradient flows on the manifold in the parameter space, includ-
ing strong form, weak form and De Giorgi type duality form. The
gradient flow formulations will cover some applications in deep
learning, ensemble Kalman filter for data assimilation, kinetic the-
ory and Markov chain Monte Carlo.
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1. Introduction

We review some recent exciting developments using gradient flow in the
parameter space for efficient sampling, including applications in ensemble
Kalman filter for data assimilation, kinetic theory, deep learning and Markov
chain Monte Carlo (MCMC). Based on Bayesian inference, all those prob-
lems can be regarded as parameter updating or reconstruction suggested by
collected data. Consider a system for x, which can be determined by parame-
ters θ. In the Bayesian inference, parameters θ are described by a probability
density function (pdf) π(θ). We want to seek and sample the pdf π(θ) for pa-
rameter θ. However it is impossible to find the true π(θ) and the only thing
we can expect is to learn more about π by gathering and analyzing data.
The statistics only means we try to find an approximated pdf of θ which
is the best suggested by data. More importantly, the goal is to design an
efficient sampling method for this pdf π(θ), which is a big challenge due to
the high dimensionality of the parameters and the complexity of the system.

Let x be the set of observed data with the pdf f(x). Here and in the
remaining of this paper, the “pdf f(x)” also refers to the “density f(x)” when
f(x) is absolutely continuous with respect to Lebesgue measure. Regard
(x, θ) as random variables with the joint pdf F (x, θ). For given parameters
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θ, assume we know the likelihood distribution f(x|θ). Bayesian formula reads

(1.1) F (x, θ) = f(x|θ)π(θ) = f(θ|x)f(x).

The goal is to approximate f(θ|x) (as well as π(θ)) by a sequence of ρk(θ)
which is updated iteratively using a stream of data. In each updating step,
denote ρap(θ) as the priori density of θ. Denote ρps(θ;x) as the posterier
density of θ with given data x, which characterizes the probability density
of parameter θ to be updated based on collected data x. We want to ap-
proximate

(1.2) f(θ|x) = f(x|θ)π(θ)
f(x)

≈ f(x|θ)ρap(θ)
f(x)

=: ρps(θ;x)

iteratively. Here at each step we use a shorthand notation ρps(θ) for ρps(θ;x)
with fixed data. In the approximation (1.2),

(1.3) f(x|θ)ρap(θ) = ρps(θ;x)f(x)

can be regarded as the Bayesian formula for the random variable (x, θ) with
θ-marginal given by ρap(θ) and x-marginal given by f(x). We will see later
f(x) does not affect the updating of parameters.

Although ρps(θ) ∝ f(x|θ)ρap(θ) is known, the ρps(θ) cannot be calcu-
lated directly by (1.3) due to high dimensionality in practice. On the other
hand, we cannot directly sample ρps(θ) due to high dimensionality and com-
plexity of system. One way is to find a dynamic system for ρt(θ) to drive the
initial density ρ0(θ) = ρap(θ) to equilibrium ρ∞(θ) = ρps(θ). The dynamic
system should has ergodicity and an invariant density, given by ρps(θ). More
precisely, we consider a manifold M in the parameter space and the push-
forward density ρt(θ) = Tt#ρap(θ) ∈ M, and find the best curve (under
some constraints) ρt driving ρ0 to ρ∞.

We recast (1.3) as

(1.4) ln f(x|θ) + ln ρap = ln ρps + ln f(x).

The natural free energy describing the closeness to the equilibrium is the
Kullback–Leibler divergence (KL-divergence) KL(ρ|ρps) :=

∫
Ω ρ ln ρ

ρps
dθ.

Consider the following minimization problem

(1.5)

ρps =argminρ∈P(Ω)KL(ρ|ρps) = argmin

∫
Ω
ρ ln

ρ

ρps
dθ

=argmin

∫
Ω
ρ ln

ρ

f(x|θ)ρap
dθ.
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Due to the positivity of f(x|θ)ρap, it can always be rewritten as ρps(θ) =

f(x|θ)ρap(θ) = e−U(θ) for some function U(θ). Therefore the minimization

problem is recast to

(1.6)

ρps = argminρ∈P(Ω)

∫
Ω
ρ ln

ρ

f(x|θ)ρap
dθ = argminρ∈P(Ω)

∫
Ω
ρ ln ρ+ ρU(θ) dθ.

To obtain efficient sampling for the parameter θ such that ρt(θ) con-

verges to its equilibrium ρps(θ) for each collected data set, which is the

updated/reconstructed parameter density, one need to design dynamic sys-

tems using some accelerated methods.

One efficient way to design the dynamic system on the parameter space

is to construct a proper gradient flow for ρt(θ) with the equilibrium ρ∞(θ).

To reformulate several recent acceleration algorithms as gradient flows on

a manifold M, we will discuss different Riemannian metrics on the tangent

plane Tρt
M, which lead to different admissible velocity set for the underly-

ing flow map. Then the gradient flow on the flow map induce manifold M
will give the steepest descent curve ρt(θ) with the steepest descent velocity

θ̇ of the underlying flow map in terms of a given free energy F(ρ) and a

Riemannian metrics gρt
. The weak formulation, strong formulation and De

Giorgi type duality formulation of gradient flows will be discussed in Section

2 and Section 4 respectively. As examples of gradient flows on manifold, we

summarize in Section 3 some successful accelerated sampling methods such

as Ornstein–Uhlenbeck (OU) process in kinetic theory, ensemble Kalman fil-

ter for data assimilation, Stein variation gradient descent(SVGD), parameter

training in deep learning. Another efficient way to design the dynamical sys-

tem on parameter space is to construct Markov chain Monte Carlo (MCMC)

directly on parameter space (such as importance sampling, variance reduc-

tion, rejection method), which can also be reformulated as a generalized

gradient flow using De Giorgi type duality formulations; see Section 4.2.1.

2. Gradient flows on a parameter manifold

To construct a dynamic system driving the initial density ρ0(θ) = ρap(θ) to

equilibrium ρ∞(θ) = ρps(θ), we regard the dynamic solution ρt as a curve

on a parameter manifold described below. We will first illustrate a flow map

(pushforward density) on a manifold and the calculations for first variation

of free energy in Section 2.1. Then we will summarize several formulations

for gradient flows on the manifold in Section 2.2.
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2.1. Manifold in parameter space induced by pushforward
density

Consider a configuration manifold M ⊂ P(Ω̄) and a flow map on the mani-
fold with any given velocity field and a curve ρt on the manifold M. Assume
the change of Eulerian spatial variable θ ∈ Ω ⊂ R

d is described by the flow
map θt(Θ) : ΩΘ

0 → Ωθ
t , satisfying

(2.1)

{
θ̇t(Θ) = vt(θt(Θ));

θ0(Θ) = Θ,

where the velocity vt ∈ R
d is to be determined. Then the curve ρt on the

configuration manifold is defined by the pushforward density

(2.2) ρt = θt#ρ0.

By the definition of pushforward density, at each time t > 0, we have the
mass conversation law

(2.3) ∂tρt = −∇ · (ρtvt), θ ∈ Ωt

in the distributional sense.
In general, the tangent plane at ρt is uniquely determined by the admis-

sible velocity field for the flow map

(2.4) Tρt
M = {(−∇ · (ρtvt); vt ∈ { admissible velocity space } }.

We will see the curve given by gradient flow on the manifold M can be
determined by the metrics on tangent plane Tρt

M.

2.1.1. First variation of free energy. In general, assume the free en-
ergy is

(2.5) F(ρt) :=

∫
Ωt

w(ρt,∇ρt) dθ.

The free energy could be more general and depends also on ∇kρt for some
k ≥ 1.

In order to calculate the first variation of free energy F with respect to all
the virtual displacements θ̃s (another arbitrary flow map starting s = t at ρt
with virtual velocity ṽt on Tρt

M described below), we define the pushforward



Parametric Bayesian inference via gradient flows 265

density under the flow map of θ̃s with flow velocity ṽs

(2.6) ρ̃s = θ̃s#ρt, ρ̃s|s=t = ρt,

and the pushforward energy density is w̃s = w(ρ̃s,∇ρ̃s).
Assumption I: In the remaining parts of this note, we specialize ourselves

to the domain R
d. (The calculations of first variation for fixed domain Ω is

same, which is equivalent to the constraint n · vt = 0 for θ ∈ ∂Ω.)
Under the Assumption I, we have

(2.7)
d

ds

∣∣
s=t

F(ρ̃s) = 〈δF
δρt

, ∂tρ̃t〉 = 〈δF
δρt

,−∇ · (ρtṽt)〉Ω =〈ρt∇
δF
δρt

, ṽt〉Ω,

where δF
δρt

is the Fréchet derivative of F . Choose KL-divergence free energy

(2.8) F(ρ) :=

∫
ρ ln(ρ/ρ∞) dθ.

Then ∇ δF
δρt

= ∇(ln ρt − ln ρ∞) and

(2.9) ρt∇
δF
δρt

= ρt∇(ln ρt − ln ρ∞) = ∇ρt −
ρt
ρ∞

∇ρ∞= ∇ρt + ρt∇U,

where ρ∞ = e−U .

2.2. The strong and weak formulation of gradient flow on
manifold

To describe a gradient flow on manifold, there are in general three ways:
strong formulation, weak formulation and De Giorgi type duality formula-
tion. Strong formulation tells us the gradient flow holds either in tangent
plane or in cotangent plane. Weak formulation is to use the virtual dis-
placement as test function and find the optimal curve such that the free
energy descents with respect to some specific metrics on tangent plane. Let
us explain the strong formulation and weak formulation in detail below.

Let Aρ : T ∗
ρM → TρM be a symmetric nonnegative defined operator

(reciprocal relation) depending on ρ from the cotangent plane to the tangent
plane. Notice the Fréchet derivative (if exists) δF

δρt
∈ T ∗

ρt
M and ∂tρt ∈ TρM.

We define a gradient flow in strong formulation (also known as the Onsager
rate equation)

(2.10) ∂tρt = −Aρt

δF
δρt
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in the sense that equation holds in tangent plane Tρt
M for a.e. t > 0. Denote

A†
ρ as the generalized inverse of Aρ, A

†
ρ : TρM → T ∗

ρM. Then the gradient
flow (2.10) can be recast as

(2.11) A†
ρt
∂tρt = −δF

δρt
.

To illustrate the motivation for the second and third formulations of
gradient flow, define the functional ψ(s) for any s ∈ TρM (also known as
Onsager dissipation potential [Mie16]),

(2.12) ψ(s) =
1

2
〈A†

ρs, s〉〈T ∗,T 〉,

where 〈·, ·〉〈T ∗,T 〉 means the dual pair in tangent plane TρM and cotangent
plane T ∗

ρM. It is easy to check ψ(s) is convex in s and its convex dual is the
functional ψ∗(ξ) for any ξ ∈ T ∗

ρM (also known as dual dissipation potential)
such that

(2.13) ψ∗(ξ) =
1

2
〈ξ, Aρξ〉〈T ∗,T 〉.

Then the strong formulation (2.10) and (2.11) imply the following identity
(2.14)

Ḟ = 〈∂tρ,
δF
δρ

〉〈T ∗,T 〉 = −2ψ(∂tρ) = −2ψ∗(−δF
δρ

) = −ψ(∂tρ)− ψ∗(−δF
δρ

).

When ψ is not a quadratic form defined in (2.12), the time integration of
the identity

(2.15) Ḟ = 〈∂tρ,
δF
δρ

〉〈T ∗,T 〉 = −ψ(∂tρ)− ψ∗(−δF
δρ

)

will lead to the definition of De Giorgi type duality formulation of gradient
flow; see Section 4.1. The third formulation of gradient flow can be real-
ized by Moreau-Yosida approximation, which inspires the construction of
minimization movement and will be discussed in Section 4.1. By extending
the quadratic form of ψ and its conjugate ψ∗ to a general convex primitive
functional, (2.15) is also called a generalized gradient flow in [RMS08]. We
will discuss the generalized gradient flow formulation for MCMC in Section
4.2.1.

Next, as for the weak formulation of gradient flow, we use the virtual
velocity on tangent plane as test function and define a Riemannian metrics
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gρ(·, ·) on TρM× TρM

(2.16) gρ(s1, s2) := 〈A†
ρs1, s2〉〈T ∗,T 〉, s1, s2 ∈ TρM.

The weak formulation of gradient flow with respect to gρ is

(2.17)
d

ds

∣∣
s=t

F(ρ̃s) = 〈δF
δρt

, ∂tρ̃t〉 = −gρ(∂tρt, ∂tρ̃t),

for any test function ρ̃s = θ̃s#ρt. Indeed, one can also define a Riemannian
metrics g∗ρ(·, ·) on T ∗

ρM× T ∗
ρM such that

(2.18) g∗ρ(ξ1, ξ2) := 〈ξ1, Aρξ2〉〈T ∗,T 〉, ξ1, ξ2 ∈ T ∗
ρM.

Although the weak formulation with respect to g∗ρ is equivalent to (2.17), it
is usually not used in this way. We will explain several gradient flow schemes
using the weak formulation (2.17) in the next section.

3. Several gradient flow acceleration schemes via different
metrics

3.1. Example I: JKO weighted H−1 metrics

The tangent plane at ρt is uniquely determined by the admissible velocity
field ṽt of the flow map

(3.1) Tρt
M = {−∇ · (ρtṽt); for ṽt ∈ L2(Ω; ρt dθ)}.

If we take the metric gρt
as weighted-H−1 inner product

(3.2) gρt
(−∇ · (ρtvt),−∇ · (ρtṽt)) := 〈ρtvt, ṽt〉Ω,

which can be regarded as the metrics induced by the operator A†
ρ = −(∇ ·

(ρ∇))−1. Then the gradient flow of F with respect to the metric gρt
is

(3.3)
d

ds

∣∣
s=t

F(ρ̃s) = −〈ρtvt, ṽt〉Ω.

Therefore we obtain the steepest descent velocity for the gradient flow is

vt = −∇δF
δρt

(3.4)
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and the governing equation with (2.8) is

∂tρt = ∇ · (ρt∇
δF
δρt

) = ∇ · (∇ρt + ρt∇U).(3.5)

This is the Fokker–Planck equation of the OU process

(3.6) dθ = −∇U(θ) dt+
√
2 dBt.

A time discretization gives a MCMC, which is an efficient way to update
ρps when the dimension of parameter space is very high. Below we use mea-
sure/distribution μN

ap and μN
ps instead of ρap and ρps. Indeed, (i) based on

the law of large number, we can use N -samplers as the initial date of the
flow map (2.1) to approximate μN

ap ≈ 1
N

∑N
i=1 δθi(0); (ii) at each time t, the

MCMC updates the random map θi(t) and thus μt can be approximated by
μN
t ≈ 1

N

∑N
i=1 δθi(t) (which can be understood as the pushforward measure

μN
t ≈ θt#μN

ap); (iii) by the ergodicity of OU process with a convex U , μN
t

will converge to its equilibrium μN
ps as t → +∞.

3.2. Beyond example I: dynamics on parameter space and
Kinetic theory

Assume ρ0 = N(θ;μ0, σ
2
0), then the special solution to the Fokker-Planck

equation for OU process (3.5) with harmonic trap potential U(θ) =

1
2

(
θ−μ∞
σ∞

)2
is given by ρt = N(θ;μt, σ

2
t ). Following the convention, here

we use μ as the mean instead of measure. One can check the parameters
(μt, σt) satisfy the ODE

(3.7) ∂tμ(t) =
μ∞ − μ(t)

σ2
∞

, ∂tσ(t) =
σ2
∞ − σ2(t)

σ(t)σ2
∞

.

Following the notations above, we assume ρt(θ) = N(θ;μ(t), σ2(t)) is
a curve on manifold M, which is uniquely described by two parameters
μ(t), σ2(t). Recall (3.5) with KL free energy (2.8)

F(ρ) :=

∫
ρ(θ) ln(ρ(θ)/ρ∞(θ)) dθ.

The velocity of the underlying flow map for ρt = θ(t)#ρ0 is given by

(3.8) θ̇(t) = −∇
(
ln

ρt
ρ∞

)
=

θ(t)− μ(t)

σ(t)2
− θ(t)− μ∞

σ2
∞

.
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Combining (3.7) and (3.8), we can obtain

(3.9)
d

dt

θ(t)− μ(t)

σ(t)
= 0.

Next we show the parameters (μt, σt), as new configurations on R
2, pos-

sess their owe gradient flow structure with natural metrics on R
2. Recall the

equilibrium distribution satisfyingN(θ;μ∞, σ2
∞) is ρ∞(θ)= 1√

2πσ2
∞
e
− (θ−μ∞)2

2σ2∞ .

Then for the special KL free energy, by the central moments formula, we
have

(3.10)

F(ρ) =E

(
ln

σ∞
σ(t)

+
(θ − μ∞)2

2σ2
∞

− (θ − μ(t))2

2σ2(t)

)

= ln
σ∞
σ(t)

+
(μ(t)− μ∞)2

2σ2
∞

+
σ2(t)

2σ2
∞

− 1

2
,

where expectation is with respect to ρt. We can calculate the first variation
of F

d

ds

∣∣
s=t

F(ρ̃s) = −∂tσ̃(t)

σ(t)
+

(μ(t)− μ∞)∂tμ̃(t)

σ2
∞

+
σ(t)∂tσ̃(t)

σ2
∞

.

Define the metrics as

gρ(t)(∂tρt, ∂tρ̃t) := ∂tμ(t)∂tμ̃(t) + ∂tσ(t)∂tσ̃(t).

Then

(3.11)
d

ds

∣∣
s=t

F(ρ̃s) = −gρ(t)(∂tρt, ∂tρ̃t)

gives the ODEs

(3.12) ∂tμ(t) =
μ∞ − μ(t)

σ2
∞

, ∂tσ(t) =
σ2
∞ − σ2(t)

σ(t)σ2
∞

.

Then we can solve the solution to the ODEs

(3.13)
μ(t) = μ∞ − (μ∞ − μ0)e

− t

σ2∞ ,

σ2(t) = σ2
∞ − (σ2

∞ − σ2
0)e

− 2t

σ∞ ,

where μ0, σ
2
0 correspond to initial expectation and variance.
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The spirit is analogue to kinetic theory for gas dynamic. Assume fε(x,
v, t) is the solution to the Boltzmann equation with mean free path ε. In
the limit of ε → 0, the density fε converges to a equilibrium density, physi-
cally known as Maxwellian distribution ρt(x)N(v;ut(x), Tt(x)I), where ρt(x)
is the density, ut(x) is the velocity, Tt(x) is the temperature at position
x ∈ R

3, time t, and N(v;ut(x), Tt(x)I) is the normal distribution of v
with mean ut(x) and covariance matrix Tt(x)I. The continuum variables
ρt(x), ut(x), Tt(x) satisfy the compressible Euler equation for gas dynam-
ics. The spirit that reducing equations for fε(x, v, t) in R

7 to equations for
(ρt(x), ut(x), Tt(x)) in R

4 is same as reducing the Fokker-Plank equation of
ρ(θ;μt, σt) to an ODE of (μt, σt) presented above.

3.3. Example II: ensemble Kalman filter (EnKF) via modified
JKO metrics

In this section, we summarize recent progresses for inverse problem using
the continuous time ensemble Kalman filter (EnKF) studied in [SS17], the
corresponding mean field limit [HV19] and the interpretation via a gradient
flow with respect to a weighted Wasserstein distance [GIHLS19].

Assume a physical system for x can be described by an operator G
acting on the unknown parameter θ. The operator is usually known but
nonlinear and complicated, such as a PDE solver for weather prediction or
optical tomography. The inverse problem we are interested in is to learn
the unknown parameter θ from observation x, which is also known as data
assimilation. Due to the observational noise η, which is assumed to be given
by a Gaussian process, the physical system satisfies

(3.14) x = G(θ) + η.

Assume the covariance of the noise Γ−1 is known. Then given θ, the distri-
bution of x satisfies f(x|θ) = N(G(θ),Γ−1) ∝ e−

1

2
〈(x−G(θ)),Γ(x−G(θ))〉 with

mean G(θ) and covariance matrix Γ−1. This likelihood function also means
the lower cost U(θ) := 1

2〈(x − G(θ)),Γ(x − G(θ))〉 has higher probability.
Following the Bayesian formulation, given any priori density ρap(θ), the pos-
terier density of θ is

(3.15) ρps(θ) ∝ N(G(θ),Γ−1) ∝ e−
1

2
〈(x−G(θ)),Γ(x−G(θ))〉 = e−U(θ;x).

Let J be the number of ensembles. Define the operator

M(θ) :=
1

J

J∑
k=1

(θk − θ̄)⊗ (θk − θ̄),
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which is positive semi-defined. To minimize the data-model misfit U , denote
θ̄ as the mean of θj and Ḡ as the mean of G(θj) for j = 1, · · · , J . The
continuous time ensemble Kalman filter(EnKF) iteration is given by [SS17]

(3.16) dθj =
1

J

J∑
k=1

〈G(θk)− Ḡ,Γ(x−G(θj))〉(θk − θ̄) dt+
√

2M(θ) dW j .

For the linear case G(θ) = Gθ, (3.16) can be recast as

(3.17)
dθj =

1

J

J∑
k=1

(θk − θ̄)⊗ (θk − θ̄)GTΓ(x−Gθj) dt+
√

2M(θ) dW j

= −M(θ)∇θU(θj ;x) dt+
√

2M(θ) dW j

where ∇θjU(θ;x) = −GTΓ(x−Gθj) in the linear case. Then the continuous
time EnKF can be rewritten as a weighted OU process

(3.18) dθj = −M(θ)∇θU(θj ;x) dt+
√

2M(θ) dW j ,

where M(θ) is usually called acceleration matrix in Langevin dynamics. We
can write down formally the corresponding Fokker Plank equation

(3.19) ∂tρt = M(t) : ∇2ρt+∇·(ρtM(t)∇U) = ∇·(ρtM(t)∇(ln ρt + U(θ))) ,

where M(t) :=
∫
(θ − E(θ)) ⊗ (θ − E(θ))ρt(θ, t) dθ is a matrix depend-

ing only on time variable. Using the special KL free energy (2.8) F(ρ) =∫
ρ ln(ρ/ρ∞) dθ. The rigorous mean field limit is studied by [HV19]. Notice

(2.9) then (3.19) is recast to

(3.20) ∂tρt = ∇ ·
(
ρtM(t)∇δF

δρt

)
.

To rewrite it as a weak formulation of gradient flow, we take the Rie-
mannian metrics gρt

as (weighted-JKO metrics)

(3.21) gρt
(−∇ · (ρtvt),−∇ · (ρtṽt)) := 〈M(t)−1ρtvt, ṽt〉Ω,

then the gradient flow of F with respect to the metric gρt
is

(3.22)
d

ds

∣∣
s=t

F(ρ̃s) = 〈δF
δρt

, ∂tρ̃t〉 = −〈M(t)−1ρtvt, ṽt〉Ω.
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Therefore we obtain the steepest descent velocity for the gradient flow is

vt = −M(t)∇δF
δρt

(3.23)

and the governing equation is

∂tρt = ∇ · (ρtM(t)∇δF
δρt

) = ∇ · (ρtM(t)∇(ln ρt + U(θ))) .(3.24)

The implementation of this acceleration algorithm is performed using weight-
ed Wasserstein distance in [GIHLS19]; see more details in Section 4.1.2

3.4. Example III: Stein variational gradient descent (SVGD)

Recall the tangent plane at ρt is uniquely determined by the admissible veloc-
ity field ṽt of the flow map. SVGD was first introduced by [LW16, Liu17]. The
idea of SVGD is to construct an efficient dynamics system by introducing a
reproducing kernel K (satisfying reproducing property 〈K(·, x),K(·, y)〉 =
K(x, y)) such that the admissible velocity is chosen in reproducing kernel
Hilbert space (RKHS), i.e.
(3.25)

Tρt
M = {−∇ · (ρtṽt); ṽt = K ∗ ψ :=

∫
K(θ, η)ψ(η) dη for some ψ ∈ R

d}.

For any −∇ · (ρtut),−∇ · (ρtṽt) ∈ Tρt
M, there exist ψ∗, ψ ∈ R

d such
that
(3.26)

ut = K ∗ ψ∗ :=

∫
K(θ, η)ψ∗(η) dη, ṽt = K ∗ ψ :=

∫
K(θ, η)ψ(η) dη.

So we define the metric gρt
as

(3.27)

gρt
(−∇ · (ρtut),−∇ · (ρtṽt)) :=

∫ ∫
K(θ, η)ψ∗(θ) · ψ(η) dη dθ = 〈ṽt, ψ∗〉.

Therefore combing (3.3) and (2.7) we can determine the velocity and
equation together, i.e.

(3.28) ut = K ∗ ψ∗ = K ∗ (−ρt∇
∂F
∂ρt

)

and

(3.29) ∂tρt = −∇ · (ρtut) = ∇ ·
(
ρtK ∗ (ρt∇

∂F
∂ρt

)

)
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SVGD with specific F . Using the special KL free energy (2.8) F(ρ) =∫
ρ ln(ρ/ρ∞) dθ and notice (2.9). Therefore we have

(3.30) ∂tρt = −∇ · (ρtut) = ∇ · (ρtK ∗ (ρt∇U +∇ρt)) .

Constructed interacting particle system. Let 1
N

∑N
i=1 δθi(t) := μN

t . Then
the ODE system for (3.30) for i = 1, · · · , N is

(3.31) θ̇i =
1

N

N∑
j=1

∇yK(θi, θj)−
1

N

N∑
j=1

K(θi, θj)∇U(θj).

Using the same arguments as MCMC for JKO scheme, μN
t ≈ θt#μN

ap will

converge to its equilibrium μN
ps as t → +∞. We refer to [LLN19] for the

convergence of the interacting particle system to its mean field limit.

3.5. Example IV: train a two-layer neural network using
parametric Bayesian inference

In this section, we summarize the idea of training target function in neural
network using parametric Bayesian inference [RVE19], see also [MMN18].

Given any function g : Ω ⊂ R
d → R as the target function to be learned,

consider the neural network approximation

(3.32) g(n)(x) =
1

n

n∑
i=1

ciϕ̂(x, zi) =
1

n

n∑
i=1

ϕ(x, θi),

where ϕ̂, usually referred as the “activation function”, is given and the pa-
rameters (ci, zi) are to be learned. For notation simplicity, we rewrite the
parameters as θi using function ϕ. Denote θ = {θi}ni=1.

Assume we have data {xj}Jj=1 and each xj ∈ R
d with the data distri-

bution ν( dx) and the label yj = g(xj). The goal is still using parametric
Bayesian inference to update parameters θ by regarding θ as random vari-
ables with the density ρ(θ).

To measure the discrepancy between the target function g and the neural
network approximation g(n), a natural cost function is

L(θ) :=
1

2
Eν(|g − g(n)|2) = 1

2
Eν(|g|2 − 2gg(n) + |g(n)|2)

(3.33)

=
1

2
Eνg

2 − 1

n

n∑
i=1

Eν(g(x)ϕ(x, θi)) +
1

2n2

n∑
i,j=1

Eν(ϕ(x, θi)ϕ(x, θj))
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=:Cg −
1

n

n∑
i=1

F (θi) +
1

2n2

n∑
i,j=1

K(θi, θj),

where F (θi) := E(g(x)ϕ(x, θi)) and K(θi, θj) := Eν(ϕ(x, θi)ϕ(x, θj)).
Given data x and its label g(x), L(θ) is a function of θ and we can

regard f(x|θ) = e−L(θ) as the likelihood distribution. Then given any a priori
density ρap(θ), following the Bayesian formulation, the posterier density of
θ is given by

(3.34) ρps(θ) ∝ f(x|θ) = e−L(θ),

which means the lower cost corresponds to higher probability. To drive ρap(θ)
to this ρps(θ), one can use any gradient flow acceleration introduced above
in Section 3. Alternatively, one can consider directly the SDE (interaction
particle system) for θ

(3.35) dθ = −∇L(θ) dt+
√
2 dBt

and construct proper MCMC schemes for it, which is discussed in [RVE19],
see also [MMN18].

4. The De Giorgi (ψ,ψ∗)-type formulation of gradient flow

In this section, we will discuss the third formulation of gradient flow, De
Giorgi type duality formulation. The (p, q)-gradient flow, as a generalization
of (2, 2)-gradient flow, can also be realized by Moreau-Yosida approximation
and will be discussed in Section 4.1. The De Giorgi (ψ,ψ∗) formulation of
gradient flow, as a further generalization of the (p, q)-gradient flow will be
discussed in Section 4.2.

4.1. (p, q)-gradient flow via minimizing movement

Given the free energy F(u) and some general distance d(u, v) in the ambient
space X, define the Moreau-Yosida approximation

(4.1) e(t) := min
u∈X

{F(u) +
1

ptp−1
dp(u, χ)},

where χ is any given function. Assume there exists a ut such that ut =
argmin{F(u) + 1

ptp−1dp(u, χ)}. For the case ut is unique, which is called
proximal point, the map χ → ut is known as proximal map. For proximal
point ut, we have

(4.2) e(t) = F(ut) +
1

ptp−1
dp(ut, χ)
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and

e(t) ≤F(us) +
1

p

(
1

tp−1
− 1

sp−1

)
dp(us, χ) +

1

psp−1
dp(us, χ)

=e(s) +
sp−1 − tp−1

ptp−1sp−1
dp(us, χ).

Exchanging s and t gives us for any 0 < s < t,

(4.3)
dp(us, χ)

ptp−1sp−1

tp−1 − sp−1

t− s
≤ e(s)− e(t)

t− s
≤ dp(ut, χ)

ptp−1sp−1

tp−1 − sp−1

t− s
.

This implies the increase of distance d(ut, χ) and the decay rate of e(t).
Indeed, taking s → t, we have for any t,

(4.4) e(t) +
1

q

∫ t

0

dp(us, χ)

sp
ds = e(0) ≤ F(χ),

which is

(4.5) F(ut) +
1

ptp−1
dp(ut, χ) +

1

q

∫ t

0

1

sp
dp(us, χ) ds ≤ F(χ).

Now we claim the last term on the left hand side can control the local slope
of the free energy

(4.6) |∂F(us)| := lim sup
v→us

(F(us)−F(v))+

d(us, v)
.

In fact, from

F(ut) +
1

ptp−1
dp(ut, χ) ≤ F(v) +

1

ptp−1
dp(v, χ),

we know

(F(ut)−F(v))+

d(ut, v)
≤ 1

tp−1

(
dp(v, χ)− dp(ut, χ)

p(d(v, χ)− d(ut, χ))+
(d(v, χ)− d(ut, χ))

+

d(ut, v)

)

≤ 1

tp−1

dp(v, χ)− dp(ut, χ)

p(d(v, χ)− d(ut, χ))+
.

Taking limit we obtain

(4.7) |∂F(us)|q ≤
dp(us, χ)

sp
for any s < t.
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Therefore, if ut is the minimizer of Moreau-Yosida approximation, then (4.5)

implies

(4.8) F(ut) +
1

ptp−1
dp(ut, χ) +

1

q

∫ t

0
|∂F(us)|q ds ≤ F(χ).

4.1.1. Minimizing movement. Based on the estimate (4.8) for the min-

imizer of Moreau-Yosida approximation, the backward Euler scheme is de-

signed as

(4.9) un+1 = argminu{F(u) +
1

p(Δt)p−1
dp(u, un)}.

Denote tn = nΔt. Then (4.8) implies

(4.10) F(un+1) +
1

p(Δt)p−1
dp(un+1, un) +

1

q

∫ tn+1

tn
|∂F(us)|q ds ≤ F(un).

By telescoping summation, we have

(4.11) F(un+1)+
1

p

n∑
k=0

(
d(uk+1, uk)

Δt

)p

Δt+
1

q

∫ tn+1

0
|∂F(us)|q ds ≤ F(u0),

Assume ut(t
n) can be approximated by un, then we have

(4.12) F(ut) +
1

p

∫ t

0
|u̇(s)|p ds+ 1

q

∫ t

0
|∂F(us)|q ds ≤ F(u0).

Alternatively from (4.10) we have

(4.13)

F(un+1)−F(un)

Δt
+

1

p

(
d(un+1, un)

Δt

)p

+
1

q

1

Δt

∫ tn+1

tn
|∂F(us)|q ds ≤ 0.

This formally gives the duality (p, q)-gradient flow

(4.14) Ḟ(ut) +
1

p
|u̇t|p +

1

q
|∂F(ut)|q ≤ 0.

If we have enough assumptions on the free energy F , the proper interpolation

of the discrete solution un gives a locally absolutely continuous curve ut
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starting from u0 and the inequality (4.12) can be improved to equality, called
Energy Dissipation Equality(EDE) definition of gradient flow [AGS08]

(4.15) F(ut) +
1

p

∫ t

0
|u̇(s)|p ds+ 1

q

∫ t

0
|∂F(us)|q ds = F(u0).

From the discrete solution via backward Euler scheme, one may also obtain
a strong version of gradient flow for p = 2, called Evolution Variation In-
equality (EVI) solution, i.e. a locally absolutely continuous curve ut starting
from u0 such that

(4.16) F(ut) +
1

2

d

dt
d2(ut, v) ≤ F(v), ∀v ∈ X, a.e.t > 0.

We refer to [AGS08] for explicit assumptions on the convexity and compat-
ibility in free energy and metrics.

4.1.2. Application to JKO/EnKF and subdifferential with respect
to Wasserstein distance. In Section 3, we have recast the JKO scheme
and EnKF as gradient flow with respect to some certain Riemannian met-
rics. To achieve the solution ρt of these gradient flow via minimizing move-
ment, an important feature is the Riemannian metrics for JKO/EnKF cor-
respond to a Wasserstein distance. By Benamou-Brenier formula, given
μ0, μ1 ∈ P2(Ω) and μ0 � L(Rd) absolutely continuous with respect to the
Lebesgue measure, the Wasserstein distance is

(4.17)

W2(μ
0, μ1)2 = min

ρ0=μ0, ρ1=μ1, ∂tρt+∇·(ρtvt)=0
{
∫ 1

0
‖vt‖2L2(ρt)

dt}

= min
ρ0=μ0, ρ1=μ1, ∂tρt+∇·(ρtvt)=0

{〈vt, vt〉L2(ρt)}

= min
T̃ ,T̃#ν0=ν1

∫
|T̃ z − z|2 dμ0(z)

=

∫
|T 1

0 z − z|2 dμ0(z),

where T 1
0 is the optimal transport map from μ0 to μ1. Let xt(z) = [(1 −

t)I + tT 1
0 ]z be the optimal flow map induced by the optimal transport map

T 1
0 . Then the constant speed geodesic ρt = xt#ρ0 induced by the optimal

transport map T 1
0 is the W2-geodesic curve. This ρt and the corresponding

velocity field vt of the optimal flow map give the optimal pair (ρt, vt) in
Benamou-Brenier formula.
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Similarly, the EnKF-Wasserstein distance is introduced in [GIHLS19] as
an implement of the gradient flow for EnKF
(4.18)

W2(μ
0, μ1)2 = min

ρ0=μ0, ρ1=μ1, ∂tρt+∇·(ρtvt)=0
{
∫ 1

0
〈M(t)−1vt, vt〉L2(ρt) dt}

= min
ρ0=μ0, ρ1=μ1, ∂tρt+∇·(ρtvt)=0

{〈M(t)−1vt, vt〉L2(ρt)}.

With two distance defined above in P(Ω), the minimizing movement
gives the gradient flow (3.5) and (3.20) respectively in EDE/EVI formula-
tion. Especially, using the optimal map T ν

μ from μ � L(Rd) to ν, one can

define the subdifferential ∂wF(μ) ⊂ Tanμt
(P2(R

d)) of F in (P2,W2) as the
set of vector fields v ∈ L2(μ,Rd) such that

(4.19) F(μ) +

∫
〈T ν

μ − I, v〉 dμ ≤ F(ν), ∀ν ∈ P2.

We refer to [AGS08] for the detailed assumptions on F . Then we obtain the
EVI formulation of gradient flow (3.5) is equivalent to

(4.20) vt ∈ −∂wF(ρt), ∂tρt +∇ · (vtρt) = 0,

for a.e. t > 0.

4.2. Generalized De Giorgi (ψ,ψ∗)-type formulation of gradient
flow

Recall the identity (2.15). When ψ is not a quadratic form, a generalized
gradient flow formulation is introduced originally by [DGT80]. Assume the
dissipation potential ψ is a convex functional defined on tangent plane TρM
and the dual dissipation potential ψ∗ is the convex dual of ψ defined on
cotangent plane T ∗

ρM. If mins ψ(s) = 0 = ψ(0), then the curve ρt satisfies

(4.21) 〈∂tρ,
δF
δρ

〉〈T ∗,T 〉 + ψ(∂tρ) + ψ∗(−δF
δρ

) = 0

is called the generalized De Giorgi (ψ,ψ∗)-type gradient flow. The (p, q)-
gradient flow obtained via minimizing movement corresponding to the spe-
cial case ψ(s) = 1

p |s|p and ψ∗(ξ) = 1
q |ξ|q. We refer to [Mie16] for the

evolutionary Γ-convergence of those generalized gradient flows. We refer to
[Agu12, SR15] for gradient flows on Finsler manifolds.
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4.2.1. Example V: generalized gradient flow for MCMC. We can

also design dynamic systems for efficient sampling by directly constructing

MCMC on parameter space. The master equation for a Markov chain with

the transition probability Pji (satisfies Pji ≥ 0 and
∑

j Pji = 1 for all i) is

given by

(4.22)
d

dt
ρi(t) =

∑
j

Pijρj(t)− ρi(t) ,

where ρi = P(θ = θi) is the probability for θ = θi. To sample the posterior

density {πi}, one can use some standard MCMC schemes with transition

probability satisfying detailed balance

(4.23) Pijπj = Pjiπi, for all i, j ;

for example, Metropolis-Hastings algorithm, Metropolis adjusted langevin

algorithm (MALA), Gibbs sampler algorithm. Then we have the following

H-theorem for the Markov chain with the transition probability Pji

d

dt
F (ρ) =

d

dt

∑
i

ρi(t) ln
ρi(t)

πi

= −1

2

∑
i,j

Pijπj

(
ρi
πi

− ρj
πj

)(
ln

ρi
πi

− ln
ρj
πj

)
≤ 0.

Consider the free energy for KL divergence F(ρ) := KL(ρ|π) with

( δFδρ )i = log ρi

πi
+1. To reformulate (4.22) as a De Giorgi (ψ,ψ∗)-type gradient

flow. Using
∑

j Pji = 1 and detailed balance, we rewrite (4.22) as

d

dt
ρi(t) =

∑
j

Pijρj(t)− ρi(t) =
∑
j

Pjiπi

(
ρj
πj

− ρi
πi

)
.

[Maa11] used the logarithmic mean of a, b as Λ(a, b) = a−b
log a−log b ≥ 0 to

reformulate (4.22) as a generalized gradient flow. Indeed, denote aij :=

PjiπiΛ(
ρi

πi
, ρj

πj
) ≥ 0 and we have aij = aji and

d

dt
ρi = −

∑
j

aij

(
log

ρi
πi

− log
ρj
πj

)
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Define ãij = −aij for i �= j and ãii =
∑

j 	=i aij . Then

(4.24)
d

dt
ρi = −

∑
j

ãij log
ρj
πj

=: −Aρ
δF

δρ
,

where ( δFδρ )i = ln ρi

πi
+ 1 is the Fréchet derivative. We refer to [Maa11] for

the corresponding Wasserstein distance and Benamou-Brenier formula.

Following the notation in Section 2.2, denote ψ∗(ξ) = 1
2〈ξ, Aρξ〉〈T ∗,T 〉.

Since aij = aji,

(4.25) 〈ξ, Aρξ〉 =
∑

i,j;i 	=j

−ξiaijξj + ξiaijξi =
1

2

∑
i,j;i 	=j

aij(ξi − ξj)
2 ≥ 0,

so ψ∗ is convex and ψ∗(ξ) ≥ ψ∗(0) = 0. Then its convex dual is ψ(s) =

supξ{〈ξ, s〉 − ψ∗(ξ)} = 1
2〈A

†
ρs, s〉 ≥ 0, where A†

ρ is the generalized inverse.
We can check (4.22) is a De Giorgi (ψ,ψ∗)-type gradient flow satisfying

(4.26) 〈δF
δρ

, ρ̇〉+ ψ(∂tρ) + ψ∗(−δF

δρ
) = 0.

We refer to [MRP14] for more discussion on how the generalized gradient
flow above is related to the L-functions in large-deviation principle for the
corresponding Fokker-Planck equation.

5. Conclusion

We discussed the parametric Bayesian inference via several gradient flow
formulations, including strong formulation in tangent space or cotangent
space, weak formulation and De Giorgi’s type dual formulation. Lots of
recently developed methods in data science are covered by these gradient
flow formulations. Based on those gradient flow formulations for Bayesian
inference, new schemes for accelerated nonconvex optimization and effective
sampling shall be studied and developed in the future.
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