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a b s t r a c t

We study spreading of a droplet, with insoluble surfactant covering its capillary surface, on a textured
substrate. In this process, the surfactant-dependent surface tension dominates the behaviors of the
whole dynamics, particularly the moving contact lines. This allows us to derive the full dynamics of
the droplets laid by the insoluble surfactant: (i) the moving contact lines, (ii) the evolution of the
capillary surface, (iii) the surfactant dynamics on this moving surface with a boundary condition at
the contact lines and (iv) the incompressible viscous fluids inside the droplet. Our derivations base
on Onsager’s principle with Rayleigh dissipation functionals for either the viscous flow inside droplets
or the motion by mean curvature of the capillary surface. We also prove the Rayleigh dissipation
functional for viscous flow case is stronger than the one for the motion by mean curvature. After
incorporating the textured substrate profile, we design a numerical scheme based on unconditionally
stable explicit boundary updates and moving grids, which enable efficient computations for many
challenging examples showing significant impacts of the surfactant to the deformation of droplets.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Dynamics of droplets spreading on an impermeable substrate is not only a fundamental mathematical problem but also has a wide
ange of practical applications such as droplet-based microfluidics in drug discovery, sensor design, enhanced oil recovery, surfactant
eplacement therapy and other dispersion technology [1–4]. Among those applications, surfactant, as one of the main material forms in
oft matter, plays an essential role during whole spreading processes. Other mesoscopic constituents in soft matter include polymers,
olloids and liquid crystals; see book [5] by Doi. Surfactant (i.e. surface-active agent) molecules are made of two parts, hydrophilic part
nd hydrophobic part. These help surfactant to form different types of micelles, depending on environment, so that they can either
issolve in a solvent or cover on the surface of a liquid droplet. We focus on insoluble surfactant (known as Langmuir monolayer) in
his paper. Surface energy, or in general interfacial energy, is very important for flows and deformation of small liquid droplets, where
he ratio between the surface area and the bulk volume is large. The addition of surfactant will decrease the effective surface tension
f the capillary surface of a droplet if the surface energy density is convex w.r.t. the surfactant concentration, which will be explained
n the next paragraph. As the insoluble surfactant spreads on the evolving capillary surface, the change of surfactant-dependent surface
ension will lead to the surfactant-driven flow, such as the Marangoni flow and fingering phenomena. Most of these surfactant-driven
lows are lack of mathematical validations and analysis. Particularly, when the droplet laid by insoluble surfactant is placed on an
mpermeable substrate, the dynamics of the capillary surface, the moving contact lines and the concentration of surfactant are all
oupled together. Therefore, mathematical derivations, validations and numerical simulations for dynamics of a droplet coupled with
oving contact lines are important and demanding topics; see review article [6] by de Gennes.
First, the spreading process of a small droplet placed on an impermeable textured substrate is mainly driven by the capillary effect.

hat is to say, the droplet tends to minimize the surface energy F , which consists of the surface energy of three interfaces among
olid, liquid and gas. Here the surface energy density for solid–liquid interfaces (solid–gas resp.) is denoted as γSL (γSG resp.) and the
urface energy density for the liquid–gas interface without surfactant is denoted as γ0. The variation of the total surface energy will
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rovide the force that dominates the dynamics of small droplets. Now we suppose there are insoluble surfactant concentrating on the
volutionary capillary surface, i.e., the interface between the liquid inside the droplet and the gas surrounding it. With the surfactant,
he surface energy density on the capillary surface will depend on the surface concentration c of surfactant and will be denoted as
(c). During the spreading process, change of the surface concentration of surfactant c(·, t) is induced by stretching and evolution
of the capillary surface and the surfactant also has its own convention and diffusion on the capillary surface. More importantly, the
surfactant-dependent surface tension γ (c), with the unit force/length, has the same unit with the energy density e(c) (energy/area)
but no longer equals e(c). The relation between the surfactant-dependent surface tension γ (c) and the free energy density e(c) of the
surfactant-covered capillary surface is given by γ (c) = e(c) − e′(c)c; see [5,7] and derivations in Section 2.1.4. Thus if the surface
energy density e(c) is convex, then γ ′(c) = −e′′(c)c ≤ 0. Therefore, as the surfactant disperses along the evolving capillary surface,
the surfactant-dependent surface tension γ (c) will in turn significantly alter the motion of the capillary surface and moving contact
lines, i.e., the lines where three phases (liquid, gas and solid) meet. This fundamental question on surfactant effect for the contact line
dynamics of droplets was discussed in the review article [6] by de Gennes.

As mentioned above, the surfactant-dependent capillary effect dominates the whole spreading process, so the evolution of the
geometric shape of the droplet coupled with the dynamics of the concentration of the insoluble surfactant on the capillary surface
are the main focus of this paper. We regard the geometric states, including wetting domain Ωt and capillary surface h(x, y, t), as the
onfiguration for the droplet dynamics. We will first derive dynamics of the surfactant moving with the capillary surface represented
y a graph function h(x, y, t) with some proper boundary conditions at the contact lines. Then combining the total energy F defined
n (2.52), a Rayleigh dissipation functional defined in (2.54) and Onsager’s principle [5,8], we derive the governing equations for the
hole system. As explained below, we focus on how the surfactant-dependent surface tension γ (c) naturally appears and dominates

n the whole system. Explicitly, we will see the surfactant-dependent Laplace pressure γ (c)H and the gradient of surfactant-dependent
urface tension ∇sγ (C) drive the motion of the capillary surface while the surfactant-dependent unbalance Young force Fs drives the
otion of contact lines.
In the first special case that the viscosity of the fluids inside the droplets are neglected, we consider the surfactant moving with

he evolving capillary surface, i.e., there is no additional tangential convection w.r.t. the capillary surface for the surfactant, called ‘‘no
ree-slip’’ case. In Section 2, we first observe the motion of the capillary surface is driven by the surfactant-dependent force γ (c)H per
unit area (known as the Laplace pressure), where H is the mean curvature of the capillary surface. This observation mainly relies on
the energy law (2.34) for the capillary surface. In this paper, we choose the convention for the mean curvature notation H so that a
sphere with radius R in 3D has the mean curvature H =

2
R . Second, the most complicated competition, relaxation and balance happen

at the contact lines, so we need to derive a surfactant-dependent unbalanced Young force at the contact lines. Without the surfactant,
the unbalanced Young force [6] at the contact lines is

FY = γSG − γSL − γ0 cos θCL = γ0 (cos θY − cos θCL) , cos θY :=
γSG − γSL

γ0
,

here θCL is the dynamic contact angle, i.e., the angle (inside the droplet) between capillary surface and the solid substrate; see Fig. 1.
hen with a dissipation mechanism, Onsager’s linear response theory with friction coefficient ξ , one can obtain the relation between
he contact line speed vCL and this driven force, and thus obtain the dynamics of the moving contact lines ξvCL = F . However, with
he presence of the surfactant, how does the surfactant transport and how does the energy exchanges at the moving contact lines are
hallenging questions. We will first derive a Robin-type boundary condition (2.45) of the surfactant dynamics at the moving contact
ines, which is consistent with both the mass conservation law and the energy conservation law; see Section 2.1.5. Then we adapt this
oundary condition to derive the surfactant-dependent unbalanced Young force at the contact lines

Fs = γSG − γSL − γ (c) cos θCL, (1.1)

in which the surfactant-dependent surface tension is exactly the one γ (c) = e(c) − e′(c)c . Hence the dynamics of the moving contact
line with the surfactant effect is

ξvCL = Fs. (1.2)

We refer to (4.16) for the corresponding effective Young force after including a textured substrate.
In summary, in the special ‘‘no free-slip’’ case, the full spreading process of the droplets can be described by (i) the continuity

equation of the surfactant, (ii) the moving contact lines and (iii) the evolution of the capillary surface via curvature flow; see (2.57) for
3D droplets with a volume constraint and see (4.16) for 2D droplets placed on a textured substrate including the gravitational effect.
Our derivations for the geometric motion of droplets, basing on a graph representation h(x, y, t) of the capillary surface, also enable us
to design an unconditionally stable and efficient numerical scheme; see Section 4.

If we further consider the general case that there are viscous bulk fluids inside the droplet and surfactant is not only move with the
capillary surface but also has ‘‘free-slip’’ with the additional tangential speed vs, then we will derive the surfactant-induced Marangoni
flow inside the droplets in Section 3. The derivations for the purely geometric motion in Section 2 can be easily adapted to the bulk
viscous flow based on Onsager’s principle with a new Rayleigh dissipation functional. In this case, there is an additional tangential
convention of the surfactant on the capillary surface contributed from the bulk fluid velocity. This convention, together with the
surface gradient of the surfactant-dependent surface tension ∇sγ (C), leads to the Marangoni flow. Here C is the surface concentration
in (2.2). Notice this additional force ∇sγ (C) in the variation of the total surface energy exerted on the capillary surface St is induced by
the spatial-changes of the surfactant-dependent surface tension; see detailed explanations in (3.10) and (3.11). Therefore, this surface
gradient is called Marangoni stress, and this phenomenon is called Marangoni effect. Then the Robin-type boundary condition (2.45)
for c at the contact lines becomes no-flux boundary condition (3.2). With the additional Marangoni stress, after incorporating the
transport equation for the surfactant, Onsager’s principle immediately yields the corresponding governing equations (3.20) for the
surfactant-induced Marangoni flow model for droplets on a substrate; see details in Section 3. We also show the Onsager reciprocal
relations for both geometric motion case and the viscous flow case and in Proposition 3.1, we prove the dissipation functional for the
viscous flow case is stronger than the one in the geometric motion model. This lower bound of the dissipation functional also helps us
2
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Fig. 1. Illustration of surface tensions γSG, γSL, γ (c) on three interfaces, contact angle θCL , capillary surface St and wetting domain Ωt for droplets on a plane (left)
r on an inclined substrate with an effective inclined angle θ0 (right).

haracterize the steady profile of the whole dynamics as a spherical cap profile with constant mean curvature while the contact angle
eing Young’s angle; see (3.38).
In Section 4, we propose a numerical scheme for the full dynamics of 2D droplets laid by the surfactant and placed on a textured

ubstrate. This unconditionally stable scheme relies on the combination of the surfactant updates, which constantly change the effective
urface tension γ (c), and the splitting method with the 1st/2nd order accuracy that developed in [9] for the purely geometric motion
f a single droplet without surfactant. Specifically, at each step, we first use unconditionally stable explicit updates for the moving
ontact lines, which efficiently decouple the computations for the motion of the capillary surface and the contact line dynamics. Then
e adapt the arbitrary Lagrangian–Eulerian (ALE) method to handle the moving grids to update the profile of the capillary surface
nd the concentration of surfactant with Robin-type boundary condition (4.10) at the contact lines. Based on this, some challenging
xamples showing significant effects of surfactant to the droplets dynamics will be conducted in Section 5. These include (i) a surface
ension decreasing phenomena and asymmetric capillary surfaces due to presence of surfactant; (ii) an enhanced rolling down for
roplets placed on an inclined substrate; (iii) droplets on a textured substrate or a container with different surfactant concentrations.
We incompletely list some recent theoretical and numerical studies on this subject, including droplets with insoluble or soluble

urfactant. The lubrication approximation for the thin film covered by insoluble surfactant are investigated by Garcke and Wieland
n [7]. They also proved the global existence and positivity for the solution to the resulting thin film equation coupled with transport
f insoluble surfactant. However, the contact line dynamics was not considered in [7]. Some numerical methods for computing the
roplet dynamics coupled with moving contact lines and insoluble surfactant are developed; see [10,11] for the immersed boundary
ethod, see [12,13] for the level set method and see [14] for an arbitrary Lagrangian–Eulerian finite element method. There are many
ther studies on the modeling and measurement of the surfactant enhancement for spreading and evaporation of droplets in various
hysical situations; cf. [15,16]. We refer to [17–19] for droplets or thin film involved dynamics coupled with soluble surfactant. Finally,
or general derivation methods for complex fluids via Onsager’s principle, we refer to Wang, Qian and Sheng [20] and a recent review
rticle by Doi [8].
The organization of this paper is as follows. In Section 2, we derive the geometric motion of 3D droplets, i.e., the moving contact

ines, the evolution of the capillary surface and the surfactant dynamics on it, in which we incorporate the surfactant-dependent surface
ension γ (c). In Section 3, we derive the full dynamics of a 3D droplet with the surfactant-induced Marangoni flow inside it. In Section 4,
e present the numerical scheme for 2D droplets placed on an inclined textured substrate based on the splitting method. In Section 5,
e conduct some challenging examples showing the significant contributions of the surfactant to the whole spreading process.

. Derivation for 3D contact line dynamics with surfactant

We study the motion of a 3D droplet placed on a substrate, which is identified by the region At := {(x, y, z); (x, y) ∈ Ωt , 0 ≤ z ≤

(x, y, t)} with a sharp interface. The motion of this droplet is described by a moving capillary surface St , and a partially wetting domain
t with a free boundary ∂Ωt (physically known as the contact lines); see Fig. 1(a). To clarify notations, let Ωt be a wetting domain,
hich is a simply connected 2D open set. Let h(x, y, t), (x, y) ∈ Ωt be the graph representation for the moving capillary surface. Then
he capillary surface can be represented as

St := {(x, y, h(x, y, t), (x, y) ∈ Ωt )}. (2.1)

Denote γSL (γSG resp.) as the interfacial surface energy density between solid–liquid phases (solid–gas resp.). γSL, γSG are constants
ut the interfacial surface energy on the capillary surface, i.e., the interface between liquid and gas, will depend on the insoluble
urfactant on it. Denote C(x, y, z, t) as the surface concentration of the surfactant on the capillary surface, i.e., the number of the
urfactant molecules per unit area.1 Denote

c(x, y, t) := C(x, y, h(x, y, t), t) (2.2)

as the ‘‘concentration’’ in terms of measure
√
1 + |∇h|2 dx dy on Ωt , hence the concentration in surface element satisfies

C H2(St ) = c
√
1 + |∇h|2 dx dy. (2.3)

Here H2(St ) is the Hausdorff measure of St . We will compute the transport of surfactant by using this ‘‘concentration’’ c(x, y, t). This
derivation in terms of (x, y) ∈ Ωt is much simpler and is equivalent to the transport of C(x, y, z, t) on the moving surface St ; see
Proposition 2.1.

1 We remark the standard notation in chemistry for the surface concentration is Γ .
3
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Let e(c) be the surface energy density on the capillary surface. Then the total surface energy of the droplet is

F(h(x, y, t), Ωt , c(x, y, t)) :=

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy + (γSL − γSG)

∫
Ωt

dx dy. (2.4)

We assume the following two constraints: the volume constraint V for the droplet and the total mass constraintM0 for the surfactant,
i.e. ∫

Ωt

h dx dy = V ,

∫
Ωt

c
√
1 + |∇h|2 dx = M0. (2.5)

efine the contact angles (the angle inside the droplet A between the capillary surface and the solid substrate) at contact lines ∂Ω as
θCL such that

tan θCL = |∇h|. (2.6)

We regard the geometric states, i.e., the wetting domain Ωt and the capillary surface h(x, y, t) as a configuration of droplets. We
assume the surfactant concentrates on the capillary surface, move with the evolutionary surface and may also has its own convention
and diffusion on the surface. In the following subsections, we will first give some kinematic descriptions for the moving surface and
the surfactant concentration on the capillary surface. Then we impose a boundary condition for the concentration c of the surfactant
on a prescribed moving capillary surface h to preserve total mass and based on it we compute the rate of change of total surface
energy; see Section 2.1. The rate of change of total energy Ḟ in (3.17) quantifies the work done by the open system (capillary surface
laid by surfactant and its contact line) against friction [21]. Then we only need to determine the velocity fields, including normal
velocity of the capillary surface vn and contact line speed vCL, via Onsager’s principle. In Section 2.2, from the energetic considerations,
we introduce a specific Rayleigh dissipation functional and using Onsager’s principle to derive the contact line motion driven by the
surfactant-dependent unbalanced Young force and finally the governing equations for the full dynamics of 3D droplets laid by the
surfactant.

2.1. Kinematic descriptions for the moving surface, the surfactant concentration and energy

Surfactant dynamics on an evolutionary surface with the mass conservation law is a well-known model, cf. [22]. For the case the
surface has a graph representation h(x, y, t), (x, y) ∈ Ωt , we will provide a simple kinematic descriptions for the moving capillary
surface, and the continuity equation for the concentration of the surfactant c(x, y, t), (x, y) ∈ Ωt on the capillary surface. Based on this,
the rate of change of the free energy F will then be calculated.

2.1.1. The continuity equation for the surfactant represented in the xy-plane
First, we describe the motion of the capillary surface St . Given a capillary surface with a graph representation h(x, y, t), (x, y) ∈ Ωt ,

ny point on this moving capillary surface can be represented as

X(t) = (x(t), y(t), h(x(t), y(t), t)). (2.7)

Then the observed velocity of this point is

Ẋ = (ẋ, ẏ, hxẋ + hyẏ + ht ). (2.8)

We assume there is an underlying velocity field v ∈ R3 driving the motion of the capillary surface, i.e.,

Ẋ(t) = v(X(t), t). (2.9)

To clarify notations for functions of (x, y) and functions of (x, y, z), we introduce notations

v(x, y, z, t) =: (vx, vy, vz)(x, y, z, t),
v(x, y, z, t)

⏐⏐
z=h(x,y,t) =: (v1, v2, v3)(x, y, t).

(2.10)

Using these notations, (2.9) implies the evolution of the surface in terms of (x, y) ∈ Ωt

ht + v1hx + v2hy = v3. (2.11)

Denote the normal vector as n :=
1√

1+|∇h|2
(−hx, −hy, 1) and the tangential vectors as τ1 := (1, 0, hx), τ2 := (0, 1, hy). Then (2.11)

ecomes

vn := v · n =
ht√

1 + |∇h|2
. (2.12)

ow we express the velocity in the directions of the normal vector n and the tangential vectors τ1, τ2 as

(v1, v2, v3)(x, y, t) = (vnn + f τ1 + gτ2)(x, y, t), (2.13)

here f (x, y, t) :=
v·τ1
|τ1|2

, g(x, y, t) :=
v·τ2
|τ2|2

.

Second, we describe the dynamics of the concentration of the insoluble surfactant on the moving surface. Recall C(x, y, z, t), (x, y, z) ∈

St is the surface concentration of surfactant on the capillary surface and (2.2). Then using (2.11), we have
d
C(x(t), y(t), h(x(t), y(t), t), t) = (∂t + v · ∇)C = (∂t + v1∂x + v2∂y)c =

d
c(x(t), y(t), t). (2.14)
dt dt
4
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herefore, the dynamics of the surfactant can be fully described by c(x, y, t) on the xy-plane, as explained below.
We derive the continuity equation for c(x, y, t), (x, y) ∈ Ωt . To do so, we use the xy-component of velocity v to define a flow map

on the xy-plane⎧⎨⎩ ẋ = v1 = vnn1 + f =
−hxvn√
1+|∇h|2

+ f ,

ẏ = v2 = vnn2 + g =
−hyvn√
1+|∇h|2

+ g.
(2.15)

his flow map defines a 2D moving surface element ωt ⊂ Ωt via ωt = {(x(t), y(t)); (x0, y0) ∈ ω0} with any given initial surface element
0. In the absence of diffusion, ωt can be regarded as a material element. That is to say, the mass in the material element ωt is conserved

d
dt

∫
ωt

c
√
1 + |∇h|2 dx dy = 0. (2.16)

By (2.16) and the Reynolds transport theorem

0 =
d
dt

∫
ωt

c
√
1 + |∇h|2 dx dy =

∫
ωt

∂t

(
c
√
1 + |∇h|2

)
+ ∇ ·

(
c
√
1 + |∇h|2

(
v1
v2

))
dx dy. (2.17)

hen by the arbitrary of ωt , the continuity equation for c(x, y, t) is

∂t

(
c
√
1 + |∇h|2

)
+ ∇ ·

(
c
√
1 + |∇h|2

(
v1
v2

))
= 0 in Ωt . (2.18)

lugging v1, v2 defined in (2.15), we obtain the continuity equation for c

0 =(∂tc)
√
1 + |∇h|2 +

c√
1 + |∇h|2

∇h · ∇ht − ∇ ·

(
cht√

1 + |∇h|2
∇h

)
+ ∇ ·

(
c
√
1 + |∇h|2

(
f
g

))

=(∂tc)
√
1 + |∇h|2 − ht∇ ·

(
c√

1 + |∇h|2
∇h

)
+ ∇ ·

(
c
√
1 + |∇h|2

(
f
g

))
.

(2.19)

fter simplification, the continuity equation for c is

∂tc − vn∇c ·
∇h√

1 + |∇h|2
+ vncH +

1√
1 + |∇h|2

∇ ·

(
c
√
1 + |∇h|2

(
f
g

))
= 0 (2.20)

for (x, y) ∈ Ωt , where H := −∇ ·

(
∇h√

1+|∇h|2

)
is the mean curvature.

.1.2. Comparison with the lift-up dynamics of C on the capillary surface
We now compare the continuity equation (2.18) for c(x, y, t) on Ωt with the original 3D concentration C(x, y, z, t) on St . We have

he following proposition on the equivalent formulation of the continuity equation in terms of C defined on the moving surface St . The
roof of this proposition will be given in Appendix A.

roposition 2.1. The continuity equation (2.18) can be recast as

(∂t + v · ∇)C + C∇s · vs + vnCH = 0 on ∪t>0 St × {t}, (2.21)

here H = ∇s · n, ∇s is the surface divergence and vs is the tangent velocity vs = v − (v · n)n.

emark 1. By some elementary calculations, we remark (2.21) is equivalent to [7, (2.13)] and also equivalent to [11, (2.10)]. Indeed,
he tangential convection can be combined with the last two terms in (2.21) in a conservative form, i.e.,

0 =∂tC + vnn · ∇C + vs · ∇C + C∇s · vs + vnCH
=∂tC + vnn · ∇C + ∇s · (Cvs) + vnCH
=∂tC + vnn · ∇C + ∇s · (Cv), [7, (2.13)].

(2.22)

Notice also the last two terms can be combined together, so (2.21) is also equivalent to

0 =∂tC + v · ∇C + C∇s · vs + vnCH
=(∂t + v · ∇)C + C∇s · v, [11, (2.10)].

(2.23)

We point out all these equivalent equations differ from ones presented in Stone [22, (6)], i.e.,

∂tC + vnn · ∇C + ∇s · (Cvs) + vnCH = 0. (2.24)

The second term above vnn · ∇C vanishes only if concentration C has a constant normal extension outside the moving surface [23].
However, from Gurtin [24], (∂t + v · ∇) is a tangential derivative of the space–time surface ∪t≥0St × {t}, so there is no need to extend
C outside the space–time surface.
5
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To describe the evolution of the capillary surface, we only need the normal velocity vn of the fluids. In the first special case, we
onsider the surfactant move with the evolving capillary surface, i.e., there is no additional tangential convection w.r.t. the capillary
urface for the surfactant. We will call this special case, as ‘‘no free-slip’’ case. In this case, the continuity equation (2.20) can be
ompletely described via vn and becomes

∂tc − vn∇ ·

(
c√

1 + |∇h|2
∇h

)
=∂tc − vn∇c ·

∇h√
1 + |∇h|2

+ vncH = 0. (2.25)

This formula is particularly efficient for simulating the purely geometric motion of the droplet and the surfactant is pinned to move
with the capillary surface. For the general case that the continuity equation is completely described via v, one needs to consider the
fluids inside the droplets instead of the purely geometric motion; see Section 3.

2.1.3. Diffusion of surfactant on the evolutionary surface
Furthermore, from some elementary calculations, the Dirichlet energy for the surfactant on the capillary surface is

1
2

∫
St

|∇sC|
2 ds =

1
2

∫
Ωt

1√
1 + |∇h|2

∇c · (M∇c) dx dy, (2.26)

here M := I +

(
−hy
hx

) (
−hy, hx

)
. Then the variation of the Dirichlet energy gives the Laplace–Beltrami operator in the graph

epresentation,

∆sc :=
1√

1 + |∇h|2
∇ ·

(
1√

1 + |∇h|2
M∇c

)
.

hus in the ‘‘no free-slip’’ case, the continuity equation (2.25) for the surfactant with additional diffusion becomes

ct −
ht√

1 + |∇h|2
∇ ·

(
c∇h√

1 + |∇h|2

)
= D∆sc, (2.27)

which is equivalent to

∂tc − vn∇c ·
∇h√

1 + |∇h|2
+ vncH = D∆sc. (2.28)

Here D > 0 is a diffusion constant. This is the continuity equation with diffusion for the surfactant dynamics on the moving surface
and we will impose the no-flux boundary condition for (2.27). Another equivalent form of (2.27) in the conservative form is

∂t

(
c
√
1 + |∇h|2

)
− ∇ ·

(
cht√

1 + |∇h|2
∇h

)
= D∇ ·

(
1√

1 + |∇h|2
M∇c

)
. (2.29)

.1.4. The rate of change of the energy on the capillary surface
In this section, given an evolutionary capillary surface h(x, y, t) and the associated surfactant dynamics (2.27) with (2.45), we

alculate the rate of change of the energy for the capillary surface.
Consider the free energy on the capillary surface

F0 =

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy, (2.30)

where e(c) is the energy density on the capillary surface and c(x, y, t) satisfies (2.27).
However, in calculations of the rate of change of the energy, the work done by the surface tension per unit time shall be a surfactant-

dependent one, given by γ (c)Hvn, where γ (c) is the effective surface tension and H = −∇ ·

(
∇h√

1+|∇h|2

)
is the mean curvature. We

ill derive this energy conservation law below.
First, the relation between the surfactant-dependent surface tension γ (c) with the free energy density e(c) is given by [5,7]

γ (c) = e(c) − e′(c)c. (2.31)

ndeed, from [5, (4.32)], γ (c) = γ0 − ΠA(c). Here γ0 = e(0) and ΠA is the surface pressure which can be calculated by the osmotic
ressure inside the interfacial layer due to the inhomogeneous surface concentration of surfactant. From the same derivations as
5, (2.23)],

ΠA(c) = −e(c) + e′(c)c + e(0).

hus we have (2.31).
Second, multiplying (2.28) by e′(c)

√
1 + |∇h|2, we have

(∂te(c))
√
1 + |∇h|2 − ∇e(c) ·

ht∇h√
2

+ htHe′(c)c = D
√
1 + |∇h|2e′(c)∆sc.
1 + |∇h|
6
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e can recast this in the conservative form

∂t

(
e(c)

√
1 + |∇h|2

)
− ∇ ·

(
e(c) ·

ht∇h√
1 + |∇h|2

)
+ htHe′(c)c

− e(c)∂t

(√
1 + |∇h|2

)
+ e(c)∇ ·

(
ht∇h√

1 + |∇h|2

)
= D

√
1 + |∇h|2e′(c)∆sc.

(2.32)

hen using the identity

− ∂t

(√
1 + |∇h|2

)
+ ∇ ·

(
ht∇h√

1 + |∇h|2

)
= −htH (2.33)

and relation (2.31), we simplify (2.32) as

∂t

(
e(c)

√
1 + |∇h|2

)
− ∇ ·

(
e(c) ·

ht∇h√
1 + |∇h|2

)
− γ (c)Hht = D

√
1 + |∇h|2e′(c)∆sc. (2.34)

he first term in (2.34) is the rate of change of the energy density per unit time per unit area in the xy-plane. The second term in (2.34)
s the flux of energy density. The third term in (2.34), i.e., −γ (c)Hht = −γ (c)Hvn

√
1 + |∇h|2 is the rate of work done by the surface

ension per unit area in the xy-plane. The last term in (2.34) is the energy density dissipation due to the diffusion of the surfactant.
Now we focus on our goal to derive the contact line dynamics which is driven by the effective surface tension γ (c). However, notice

he boundary condition cannot be derived by taking trace of the interior velocity, so we will apply the Reynolds transport theorem
sing the boundary velocity of the moving domain. In the next subsection, we will discuss the correct boundary condition for the
oncentration of the surfactant.
The fundamental relation (2.31) implies the decreasing of γ (c) from the convexity of energy density e(c). Many interesting physical

henomena can be explained by the gradient of effective surface tension γ (c) due to the gradient of surfactant concentration. For
nstance, the gradient of surface tension will drive the spreading of the droplet and the surfactant rapidly aggregates to the direction of
ower concentration, which forms Marangoni flow on the surface. Particularly, when the concentration of surfactant is above a critical
icelle value, the surfactant-driven spreading will lead to fingering phenomenon, an unstable structure on surfactant-laden droplets [1].
e remark a typical γ , derived from the Langmuir equation, is given by

γ (c) = γ0 + cskT ln(1 −
c
cs
), e(c) = γ0 + kT ((cs − c) ln(cs − c) + c ln c − cs ln cs) , (2.35)

where γ0 is the surface tension without the surfactant and cs is the saturated concentration [5]. We will demonstrate numerical
examples using this typical γ .

2.1.5. Impose a boundary condition at the contact line for the surfactant to preserve total mass
To derive a boundary condition for the surfactant equation at the contact lines, we now apply the Reynolds transport theorem for

the whole wetting domain Ωt up to its boundary. We shall be careful when using the boundary velocity in the Reynolds transport
theorem because the boundary condition of a PDE cannot be derived by taking trace of the interior equation.

Denote nℓ as the outer normal of the contact line ∂Ωt in the xy-plane and vℓ as the velocity of the contact line. We have nℓ = −
∇h
|∇h|

n the contact line ∂Ωt . Denote the normal speed of the contact line as vCL := vℓ · nℓ. By the Reynolds transport theorem we have

d
dt

∫
Ωt

c
√
1 + |∇h|2 dx dy =

∫
Ωt

∂t

(
c
√
1 + |∇h|2

)
dx dy +

∫
∂Ωt

c
√
1 + |∇h|2vℓ · nℓ ds. (2.36)

hen by (2.29) and integration by parts, we obtain∫
Ωt

∂t

(
c
√
1 + |∇h|2

)
dx dy = D

∫
∂Ωt

1√
1 + |∇h|2

M∇c · nℓ ds +

∫
∂Ωt

cht√
1 + |∇h|2

∇h · nℓ ds (2.37)

otice the definition of M gives

M∇c · nℓ = nℓ · ∇c + nℓ · (−hy, hx) (−hy, hx) · ∇c = nℓ · ∇c on ∂Ωt . (2.38)

otice also the compatibility condition dh(x(t),y(t),t)
dt = 0 on the contact line gives

ht = −∇h · vℓ. (2.39)

hen from nℓ = −
∇h
|∇h| on ∂Ωt , (2.39) becomes

ht = |∇h|nℓ · vℓ = |∇h|vCL, (2.40)

which implies

ht√
1 + |∇h|2

∇h · nℓ = −
|∇h|2√

1 + |∇h|2
vCL. (2.41)

Thus (2.37) can be further simplified as∫
∂t

(
c
√
1 + |∇h|2

)
dx dy =

∫
D

nℓ · ∇c√
2

− c
|∇h|2√

2
vCL ds. (2.42)
Ωt ∂Ωt 1 + |∇h| 1 + |∇h|
7
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lugging this into (2.36), we have

d
dt

∫
Ωt

c
√
1 + |∇h|2 dx dy

=

∫
∂Ωt

D√
1 + |∇h|2

nℓ · ∇c −

∫
∂Ωt

c
|∇h|2√

1 + |∇h|2
vCL − c

√
1 + |∇h|2vCL ds

=

∫
∂Ωt

D√
1 + |∇h|2

nℓ · ∇c +

∫
∂Ωt

c
1√

1 + |∇h|2
vCL ds.

(2.43)

Therefore, in order to maintain the mass conservation law

0 =
d
dt

∫
Ωt

c
√
1 + |∇h|2 dx dy =

∫
∂Ωt

1√
1 + |∇h|2

(Dnℓ · ∇c + c vCL) ds, (2.44)

we impose the following Robin boundary condition for (2.27)

Dnℓ · ∇c + c vCL = 0 on ∂Ωt . (2.45)

2.1.6. Rate of change of the total surface energy
Using the Reynolds transport theorem for the surface energy

d
dt

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy

=

∫
Ωt

∂t

(
e(c)

√
1 + |∇h|2

)
dx dy +

∫
∂Ωt

e(c)
√
1 + |∇h|2vCL ds

=

∫
Ωt

∇ ·

(
e(c) ·

ht∇h√
1 + |∇h|2

)
+ γ (c)Hht + De′(c)∇ ·

(
1√

1 + |∇h|2
M∇c

)
dx dy

+

∫
∂Ωt

e(c)
√
1 + |∇h|2vCL ds,

(2.46)

where we used (2.34) in the last equality. Then using the integration by parts, (2.46) becomes

d
dt

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy

=

∫
Ωt

htHγ (c) − D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy

+

∫
∂Ωt

e(c)
ht√

1 + |∇h|2
∇h · nℓ + De′(c)

M∇c · nℓ√
1 + |∇h|2

ds +

∫
∂Ωt

e(c)
√
1 + |∇h|2vCL ds.

(2.47)

hen using (2.41) and (2.38), by the same calculations as (2.43), we have

d
dt

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy

=

∫
Ωt

htγ (c)H − D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy +

∫
∂Ωt

1√
1 + |∇h|2

[De′(c) nℓ · ∇c + e(c)vCL] ds,
(2.48)

From the boundary condition (2.45), we have

De′(c) nℓ · ∇c + e(c)vCL = −e′(c)c vCL + e(c)vCL = γ (c)vCL. (2.49)

hus, this, together with (2.48), implies the rate of change of the surface energy F0

d
dt

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy

=

∫
Ωt

γ (c)htH − D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy +

∫
∂Ωt

γ (c) cos θCL vCL ds,
(2.50)

where we used cos θCL =
1√

1+|∇h|2
on ∂Ωt .

From (2.50) and the rate of change of the surface energy for the bottom part

d
(γSL − γSG)

∫
dx dy = (γSL − γSG)

∫
vCL ds,
dt Ωt ∂Ωt

8
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e finally obtain the rate of change of the total surface energy

d
dt

(∫
Ωt

e(c)
√
1 + |∇h|2 dx dy + (γSL − γSG)

∫
Ωt

dx dy
)

=

∫
Ωt

γ (c)htH − D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy +

∫
∂Ωt

(γ (c) cos θCL + γSL − γSG) vCL ds.
(2.51)

With the volume constraint V , we take the total free energy of the droplet as

F(h(t), Ωt , λ(t)) =

∫
Ωt

e(c)
√
1 + |∇u|2 dx dy + (γSL − γSG)

∫
Ωt

dx dy − λ(t)
(∫

Ωt

h dx dy − V
)

, (2.52)

here λ(t) is a Lagrangian multiplier. Thus, given h(x, y, t) and c(c, y, t), the rate of change of the total free energy can be regarded as
functional of ht , vCL. Denote

d
dt

F(ht , vCL; h, c) :=
d
dt

F = −

∫
Ωt

(−γ (c)H + λ) ht dx dy − D
∫

Ωt

e′′(c)√
1 + |∇h|2

∇c · M∇c dx dy

+

∫
∂Ωt

(γ (c) cos θCL + (γSL − γSG)) vCL ds.
(2.53)

he derivation with some additional potential forces is standard and will not be included here.

.2. The onsager principle and the governing equations in 3D

In Section 2.1, we used the normal velocity vn and the contact line speed vCL to give kinematic descriptions including (i) the motion
f the capillary surface (2.12), (ii) the continuity equation of the surfactant (2.28) and (iii) the rate of change of total energy (2.53).
ow we determine these velocities vn, vCL from energetic considerations via Onsager’s principle.
From energetic considerations, we choose the following Rayleigh dissipation functional

Q (ht , vCL; h, c) :=
β

2

∫
Ωt

h2
t√

1 + |∇h|2
dx dy +

ξ

2

∫
∂Ωt

|vCL|
2 ds +

D
2

∫
Ωt

e′′(c)√
1 + |∇h|2

∇c · M∇c dx dy, (2.54)

where β represents the friction coefficient for the normal motion of the capillary surface, ξ represents the friction coefficient for the
moving contact lines and the last term represents the dissipation due to the diffusion of the surfactant. We will see the first term in
(2.54) leads to the motion by mean curvature of the capillary surface [25]. Then minimizing the Rayleighian [5]

R(ht , vCL; h, c) := Q (ht , vCL; h, c) +
d
dt

F(ht , vCL; h, c) (2.55)

with respect to (ht , vCL) gives the governing equation
β√

1 + |∇h|2
ht = −γ (c)H + λ,

ξvCL = −γ (c) cos θCL − (γSL − γSG),
(2.56)

where the right hand side Fs = −γ (c) cos θCL − (γSL − γSG) is exactly the surfactant-dependent unbalanced Young force.
Combining this with (2.27), the full system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β√
1 + |∇h|2

ht = −γ (c)H + λ, h(x, y)|∂Ωt = 0,

ct −
ht√

1 + |∇h|2
∇ ·

(
c∇h√

1 + |∇h|2

)
= D∆sc, cvCL + Dnℓ · ∇c

⏐⏐
∂Ωt

= 0,

ξvCL = −γ (c) cos θCL − (γSL − γSG), on ∂Ωt ,∫
Ωt

h dx dy = V .

(2.57)

his system can be regarded as (i) the linear response relation of vn to the Laplace pressure γ (c)H , (ii) the linear response relation of
CL to the surfactant-dependent unbalanced Young force Fs, and (iii) the transport of the insoluble surfactant on the capillary surface.
As a consequence, the energy dissipation relation is

d
dt

F = −

∫
Ωt

βh2
t√

1 + |∇h|2
dx dy − D

∫
Ωt

e′′(c)√
1 + |∇h|2

∇c · M∇c dx dy −

∫
∂Ωt

ξ |vCL|
2 ds

= − 2Q .

(2.58)

In physics, 2Q
T is denoted as Ṡ, the entropy production rate.

We point out that the first dissipation term in Rayleigh dissipation functional (2.54) is not a standard one. Instead, the standard
issipation functional includes the dissipation due to the viscosity of fluids inside the droplet, for which we will also give a simple
erivation using Onsager’s principle in Section 3. However, our choice of the Rayleigh dissipation functional (2.54) allows us to study
he purely geometric motion of the droplets and has the following advantages. (i) For small droplets, it captures the essential physics
9
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nd the leading behaviors of the droplet dynamics; (ii) it satisfies the Onsager principle in physics and thus has a gradient flow structure
o that this simplified model is friendly for theoretical studies; (iii) this model is also computationally efficient because it does not need
o compute the fluids inside the droplets and the numerical schemes can be easily adapted to more complicated physical examples
uch as inclined textured substrates, the electrowetting and the surfactant dynamics considered here.

. Surfactant-induced Marangoni stress and viscous flow

In this section, we derive the surfactant-induced Marangoni flow for droplets on a substrate by including the viscous bulk fluids
nside the droplets. Including the fluid viscosity dissipation in the Rayleigh dissipation functional, instead of the first term in (2.54),
ill lead to the Stokes equations for fluids inside droplets [13,15,16] or the thin film equation in the lubrication approximation [16,26].
lthough different forms of viscous flow models coupled with moving contact lines and surfactant transport were derived previously,
e adapt the energy law on the capillary surface (2.34) to the general case, i.e., the surfactant moves on the capillary surface along
ith both the normal velocity vn and tangential velocity vs of the fluids, and then use Onsager’s principle to give a simple derivation

or the viscous bulk fluids inside the droplet coupled with the Marangoni flow induced by the surfactant. We will see in (3.12) and
3.20) that the variation of the total surface energy with a surfactant-dependent surface tension will exert an additional force ∇sγ (c)
for the bulk fluids on the capillary surface St . This surface gradient of the effective surface tension induces a Marangoni flow, and thus
this phenomenon is called Marangoni effect. At the end of this section, we also point out the two cases with or without bulk fluids
inside the droplet are indeed quite similar in terms of the linear response relation u = KF ; see (3.30). In Proposition 3.1, we will prove
the Rayleigh dissipation functional for the viscous flow case is indeed stronger than the one for the motion by mean curvature of the
capillary surface. However, the bulk fluids cases with both the hydrodynamic effect of the viscous bulk fluids inside the droplet and the
surfactant effect on the moving surface, i.e., the case that the dynamics of the bulk fluids is described by the Stokes equation coupled
with the advection–diffusion of the surfactant on the moving capillary surface (see (3.20)), require additional computations for bulk
fluids. Thus the computational strategies presented in Section 4 shall be modified and will be left as a future research.

Now let us first state the idea of derivations for the governing equations (3.20) for the general ‘‘free-slip’’ case, i.e., the surfactant
moves on the capillary surface along with both the normal velocity vn and tangential velocity vs of the fluids inside the droplet. For this
general case, given an underlying velocity v, the kinematic description for the capillary surface is still (2.11), i.e., ht + v1hx + v2hy = v3,
nd the continuity equation for the surfactant becomes (3.1). Below, we will follow the procedures in Section 2 to first give the kinematic
escriptions for the rate of change of total energy in Section 3.1. After the calculations for the rate of change of total energy Ḟ in (3.17),
t quantifies the work done by the open system (capillary surface laid by surfactant and its contact line) against friction [21]. Then
e determine the velocity fields, including fluid velocity v and contact line speed vCL, via energy considerations in Section 3.2, i.e., via
nsager’s principle by introducing a new Rayleigh dissipation functional Q . These immediately yield the governing equations and the
nergy dissipation law for the bulk fluids coupled with transport of surfactant on the evolutionary surface; see (3.20). In the end of this
ection, we give a proof of Onsager’s reciprocal relation and obtain a lower bound estimate for energy dissipation in Proposition 3.1,
hich helps us to characterize the steady solution as a spherical cap laid by constant-concentrated surfactant.

.1. Kinematic descriptions for the rate of change of total energy

In the following subsections, we will adapt the same kinematic descriptions as in Section 2 to the general ‘‘free-slip’’ case for
urfactant with vs, derive the corresponding boundary conditions of the surfactant at the contact line and compute the rate of change
f the total surface energy. With the convection contribution, transport equation (2.29) for c becomes

∂t

(
c
√
1 + |∇h|2

)
− ∇ ·

(
cht√

1 + |∇h|2
∇h

)
+ ∇ ·

(
c
√
1 + |∇h|2

(
f
g

))
= D∇ ·

(
1√

1 + |∇h|2
M∇c

)
. (3.1)

We impose a non-flux boundary condition

nℓ · ∇c
⏐⏐
∂Ωt

= 0 (3.2)

for c to preserve the total mass of the surfactant.

3.1.1. Conservation of the total mass of the surfactant
Using (3.1) and the same calculus derivations as (2.43) except for adding (f , g), we have

d
dt

∫
Ωt

c
√
1 + |∇h|2 dx dy

=

∫
∂Ωt

D√
1 + |∇h|2

nℓ · ∇c +

∫
∂Ωt

c
1√

1 + |∇h|2
vCL − c

√
1 + |∇h|2

(
f
g

)
· nℓ ds.

(3.3)

he first term on the right-hand-side vanishes due to the no-flux boundary condition (3.2). Recall (2.13). Suppose we impose the
on-penetration boundary condition for the bulk fluid velocity v · ez |∂Ωt = 0. Then

v · ez =
vn√

1 + |∇h|2
+ hxf + hyg = 0 on ∂Ωt . (3.4)

Then by nℓ = −
∇h
|∇h| , we have

vn√
2

= |∇h|
(
f
g

)
· nℓ. (3.5)
1 + |∇h|
10
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rom this and the continuity condition (2.40), we know the last two terms in (3.3) also vanish

1√
1 + |∇h|2

vCL −

√
1 + |∇h|2

(
f
g

)
· nℓ = 0. (3.6)

ence (3.3) yields d
dt

∫
Ωt

c
√
1 + |∇h|2 dx dy = 0.

3.1.2. Calculations of Marangoni stress induced by the tangential convection of surfactant
Recall (v1, v2)(x, y, t) is the xy-component of the velocity of the moving capillary surface. Then (3.1) is recast as

∂t

(
c
√
1 + |∇h|2

)
+ ∇ ·

(
c
√
1 + |∇h|2

(
v1
v2

))
= D∇ ·

(
1√

1 + |∇h|2
M∇c

)
. (3.7)

Then by same calculations as (2.34), we obtain the change of the surface energy

∂t

(
e(c)

√
1 + |∇h|2

)
+ ∇ ·

(
e(c)

√
1 + |∇h|2

(
v1
v2

))
=γ (c)

(
∂t

√
1 + |∇h|2 + ∇ ·

(√
1 + |∇h|2

(
v1
v2

)))
+ D

√
1 + |∇h|2e′(c)∆sc

=:γ (c)I + D
√
1 + |∇h|2e′(c)∆sc.

(3.8)

Here using the identity (2.33), γ (c)I can be further simplified as

γ (c)I =γ (c)htH − ∇γ (c) ·

(√
1 + |∇h|2

(
f
g

))
+ ∇ ·

(
γ (c)

√
1 + |∇h|2

(
f
g

))
= −

√
1 + |∇h|2

(
−γ (c)vnH +

(
f
g

)
· ∇γ (c)

)
+ ∇ ·

(
γ (c)

√
1 + |∇h|2

(
f
g

))
. (3.9)

Now we simplify the first term in γ (c)I to see that besides the Laplace pressure, there is an additional force, brought by the surface
radient of γ (C). Recall v = vnn + vs. Denote

F := −γ (c)Hn + ∇sγ (C). (3.10)

Here the additional force term, surface gradient ∇sγ (C), is called the Marangoni stress, so the total capillary force density F exerting to
the environment consists of both the negative Laplace pressure done by the capillary surface and the Marangoni stress caused by the
surface gradient of surfactant-dependent surface tension. We now prove the first term in γ (c)I satisfies

− γ (c)vnH +

(
f
g

)
· ∇xyγ (c) = v · F . (3.11)

In other words, the first term in (3.9) can be recast as the work done by the capillary surface per unit time v · F . Indeed, from the
orthogonality and definition of F in (3.10), we have

v · F = −vnγ (c)H + vs · ∇sγ (C) on z = h(x, y, t). (3.12)

By the definition of vs and surface gradient, the last term is

vs · ∇sγ (C) =(f τ1 + gτ2) · [(I − n ⊗ n)∇γ (C)]

=(f τ1 + gτ2) · ∇γ (C) =

(
f
g

)
· ∇xyγ (c).

3.1.3. Rate of change of total surface energy
Recall the calculations for energy change (3.8) and its relation with the Marangoni stress F in (3.11). Using the same calculations as

(2.47), we can simplify the second term in (3.9)

d
dt

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy

= −

∫
Ωt

v · F
√
1 + |∇h|2 dx dy −

∫
Ωt

D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy

+

∫
e(c)

ht√
2
∇h · nℓ − ce′(c)

√
1 + |∇h|2

(
f
g

)
· nℓ ds +

∫
e(c)

√
1 + |∇h|2vCL ds,

(3.13)
∂Ωt 1 + |∇h| ∂Ωt

11
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here we used the no-flux boundary condition (3.2). Using (3.6) and (2.41),

d
dt

∫
Ωt

e(c)
√
1 + |∇h|2 dx dy

= −

∫
Ωt

v · F
√
1 + |∇h|2 dx dy −

∫
Ωt

D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy

+

∫
∂Ωt

−e(c)
|∇h|2√

1 + |∇h|2
vCL − ce′(c)

1√
1 + |∇h|2

vCL ds +

∫
∂Ωt

e(c)
√
1 + |∇h|2vCL ds

= −

∫
Ωt

v · F
√
1 + |∇h|2 dx dy −

∫
Ωt

D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy +

∫
∂Ωt

γ (c)vCL
1√

1 + |∇h|2
ds.

(3.14)

Therefore in the presence of convention contribution of surfactant, the rate of change of the total surface energy becomes

d
dt

[∫
Ωt

e(c)
√
1 + |∇h|2 dx dy + (γSL − γSG)

∫
Ωt

dx dy
]

= −

∫
Ωt

v · F
√
1 + |∇h|2 dx dy −

∫
Ωt

D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy −

∫
∂Ωt

FsvCL ds,
(3.15)

where Fs = −γ (c) cos θCL + γSG − γSL is the surfactant-dependent unbalanced Young force.

3.2. Energetic descriptions: Stokes flow for bulk fluids and governing equations derived by Onsager’s principle

As we used the fluid velocity v and the contact line speed vCL to give kinematic descriptions including motion of the capillary
surface, the continuity equation of the surfactant and the rate of change of total energy (3.15), it remains to determine these velocities
v, vCL from energetic considerations. Using Onsager’s principle and a new Rayleigh dissipation functional, we give derivations for the
governing equations of the surfactant induced Marangoni flow coupled with moving contact lines.

Let u(x, y, z, t) be the velocity of the bulk fluids. Assume the velocity v of the capillary surface coincides with the velocity u of the
bulk fluids restricted on the capillary surface, i.e., v(x, y, t) = u(x, y, z, t)

⏐⏐
z=h(x,y,t).

First, we impose the non-penetration boundary condition for the bottom of the droplet

u · n = 0 on Ωt (3.16)

and consider an incompressible fluid satisfying ∇ · u = 0 inside the droplet At .
Given h(x, y, t) and c(x, y, t), then the rate of change of the total surface energy (3.15) can be regarded as a linear functional of u, vCL

and we denote it as

Ḟ(u, vCL; h, c) := −

∫
Ωt

u · F
√
1 + |∇h|2 dx dy −

∫
Ωt

D
e′′(c)√

1 + |∇h|2
∇c · M∇c dx dy −

∫
∂Ωt

FsvCL ds. (3.17)

We remark the rate of change of total energy Ḟ in (3.17) quantifies the work done by the open system (capillary surface laid by
surfactant and its contact line) against friction [21]. Then all we need to do is to determine the fluid velocity u and the contact line speed
vCL via Onsager’s principle by introducing a proper Rayleigh dissipation functional Q . In general, the choice of the Rayleigh dissipation
functional in Onsager’s principle comes from phenomenological modeling instead of from some physical principles. Therefore, Onsager’s
principle is valid only for certain class of problems. However, many specific problems in soft matter including diffusion, viscous fluids
and surfactant belong to this class. The resulting governing equations determined by the choice of Rayleighian are consistent with
some well-accepted or experimentally tested models, for instance, the Navier–Stokes equations and the stokes equations in the current
section; see more worked out examples in Doi’s book [27].

Second, given h(x, y, t) and c(x, y, t), introduce the Rayleigh dissipation functional Q

Q (u, vCL; h, c) :=
µ

4

∫
At
(∇u + ∇u⊤) : (∇u + ∇u⊤) dV +

D
2

∫
Ωt

e′′(c)√
1 + |∇h|2

∇c · M∇c dx dy

+
µ

2α

∫
Ωt

u2 dx dy +
ξ

2

∫
∂Ωt

|vCL|
2 ds,

(3.18)

here µ is the dynamics viscosity for the bulk fluids and α is the slip length.
Given h(x, y, t) and c(x, y, t), define Rayleighian as

R(u, vCL; h, c) := Q (u, vCL; h, c) + Ḟ(u, vCL; h, c). (3.19)

hen based on Onsager’s principle, we minimize R(u, vCL; h, c) w.r.t the velocity u, vCL. This yields the following governing equations,
hose derivations are given in three steps below.
12
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After incorporating the transport equation (3.1) for surfactant c and the no-flux boundary condition (3.2), the minimization of
R(u, vCL; h, c) gives the governing equations⎧⎪⎨⎪⎩

∇p = µ∆u in At ,

∇ · u = 0 in At ,

σn = F on St ,
α
µ
τ · σn + τ · u = 0, u · n = 0 on Ωt ,{

∂th + u1∂xh + u2∂yh = u3 on Ωt ,

h = 0 on ∂Ωt
ξvCL = Fs on ∂Ωt ,⎧⎨⎩∂t

(
c
√
1 + |∇xyh|2

)
+ ∇xy ·

(
c
√
1 + |∇xyh|2

(
u1
u2

))
= D∇xy ·

(
1√

1+|∇xyh|2
M∇xyc

)
on Ωt ,

∇xyc · nℓ = 0 on ∂Ωt ,

(3.20)

where u1(x, y, t) = ux(x, y, h(x, y, t), t), u2(x, y, t) = uy(x, y, h(x, y, t), t), u3(x, y, t) = uz(x, y, h(x, y, t), t) and

σ = −pI + µ(∇u + ∇u⊤), F = −γ (c)Hn + ∇sγ (C), Fs = −γ (c) cos θCL + γSG − γSL. (3.21)

The first group of (3.20) is the stationary Stokes equation inside the droplet coupled with the traction boundary condition balanced
with the total capillary force density F and Navier slip boundary condition at the bottom. The second group of (3.20) is the evolution
of the capillary surface induced by the fluid velocity and the moving contact line as a linear response to the surfactant-dependent
unbalanced Young force Fs. The third group of (3.20) is the transport equation for the insoluble surfactant with the no-flux boundary
condition on the contact line ∂Ωt . We particularly point out that the Dirichlet boundary condition h = 0 on ∂Ωt is necessary [28]
ecause ‘‘the projection of the capillary forces onto the vertical axis is balanced out by a force of reaction exerted by the solid’’
29, p. 18]. We refer to [30] for the wellposedness of this model for the 2D single droplet without surfactant. We remark in the case
→ 0, the Navier slip boundary condition in the first group of (3.20) is reduced to the nonslip boundary condition u = 0 on Ωt . In

his case, the Rayleigh dissipation functional becomes

Q =
µ

4

∫
At
(∇u + ∇u⊤) : (∇u + ∇u⊤) dV +

D
2

∫
Ωt

e′′(c)√
1 + |∇h|2

∇c · M∇c dx dy +
ξ

2

∫
∂Ωt

|vCL|
2 ds. (3.22)

The derivations of the governing equations (3.20) can be summarized as the following three steps.
Step 1. To impose the incompressible condition, introduce the Lagrangian multiplier p. Then we take the first variation of R with

erturbations u + εũ, p + εp̃ such that (ũ, p̃) are compact supported in the open set At ,

0 =
d
dε

⏐⏐⏐
ε=0

(
R(u + εũ, vCL; h, c) −

∫
At
(p + εp̃)∇ · (u + ũ)

)
. (3.23)

This implies the static Stokes equation inside At

∇ · σ = 0, ∇ · u = 0,

σ = −pI + µ(∇u + ∇u⊤).
(3.24)

Step 2. From the non-penetration boundary condition (3.16), we take the first variation of R with perturbations u + εũ satisfying
˜ · n

⏐⏐
z=0 = 0. Using (3.24),

0 =
d
dε

⏐⏐⏐
ε=0

R(u + εũ, vCL; h, c)

=
µ

2

∫
At
(∇u + ∇u⊤) : (∇ũ + ∇ũ⊤) dV +

µ

α

∫
Ωt

u · ũ dx dy −

∫
St
ũ · F ds

=

∫
At

σ : ∇ũ dV +
µ

α

∫
Ωt

u · ũ dx dy −

∫
St
ũ · F ds

=

∫
Ωt

ũ · (σn +
µ

α
u) dx dy +

∫
St
ũ · (σn − F) ds.

(3.25)

By the arbitrary of ũ, this implies the Navier slip boundary condition for the bottom part
α

µ
τ · σn + τ · u = 0 on Ωt (3.26)

and the traction boundary condition on the capillary surface

σn = F on St . (3.27)

Step 3. Taking first variation of R w.r.t vCL + εṽCL, we obtain the contact line speed

ξvCL = Fs on ∂Ωt . (3.28)

Thus after incorporating the transport of the surfactant, we obtain the governing equations (3.20) of the surfactant induced Marangoni
flow for droplets on a substrate. As a consequence, the energy dissipation law is

Ḟ = −2Q . (3.29)
13
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Now we explain Onsager’s reciprocal relation for the linear response of u, vCL to the two unbalanced forces F , Fs. Given c(x, y, t) and
h(x, y, t), define an operator

K : L2(St;R3) → L2(St;R3), F ↦→ u|St

such that u solves the Stokes equations with traction force F (first group in (3.20)). Then the velocity fields u, vCL solved from the
governing equation (3.20) satisfy the following linear response relations

u = KF on St ,
vCL =

1
ξ
Fs on ∂Ωt .

(3.30)

Proposition 3.1. K is a bijective and self-adjoint operator from L2(St;R3) onto L2(St;R3). K is a positive operator in L2(St;R3). Furthermore,
for the no-slip boundary condition case, i.e., α = 0, then K is a bounded operator in L2(St;R3) satisfying∫

St
F · KF ds ≥ C

∫
St

|KF |
2 ds for any F ∈ L2(St;R3). (3.31)

Proof. First, given any f ∈ L2(St;R3), the solution to⎧⎪⎨⎪⎩
∇p = µ∆u in At ,

∇ · u = 0 in At ,

u = f on St ,
α
µ
τ · σn + τ · u = 0, u · n = 0 on Ωt ,

(3.32)

exists uniquely. This gives a unique F = σn and thus K is bijective operator from L2(St;R3) onto L2(St;R3).
Second, for any F1, F2 ∈ L2(St;R3), let u1 = KF1 and u2 = KF2. Then we have∫

St
F1 · KF2 ds =

∫
St

σ1n · u2 ds

=
µ

2

∫
At
(∇u1 + ∇u⊤

1 ) : (∇u2 + ∇u⊤

2 ) dV +
µ

α

∫
Ωt

u1 · u2 dx dy =

∫
St
KF1 · F2 ds,

(3.33)

hich, together with D(K) = L2(St ), shows K is self-adjoint. The symmetry (3.33) is known as Lorentz’s reciprocal theorem for the
tokes flow.
Third, the positivity of K is directly from∫

St
F · KF ds ≥ 0. (3.34)

his equality holds if and only if F ≡ 0 because u|Ωt = 0 implies the Korn’s inequality [31, (3)]∫
At

|∇u|2 dV ≤ C
∫
At

|∇u + ∇u⊤
|
2
dV , (3.35)

here C is a generic constant.
Fourth, in the case α = 0. Combining the trace theorem, the standard Poincare’s inequality and Korn’s inequality (3.35), we know∫

St
|u|2 ds ≤ C

∫
At

(
|u2

| + |∇u|2
)

dV ≤ C
∫
At

|∇u + ∇u⊤
|
2
dV . (3.36)

his concludes (3.31). □

The first statement in Proposition 3.1 proves the linear response operator K is positive self-adjoint in L2(St;R3). The symmetry (3.33)
f K is exactly the original statement in Lorentz’s reciprocal theorem for the Stokes flow, while we interpret it as a positive self-adjoint
perator in a functional space.
The second advantage of Proposition 3.1 is we proved the lower bound of the inverse operator K−1, which means the dissipation

erm Q in (3.29) and (3.22) has a lower bound. That gives further the energy estimate

Ḟ = −2Q ≤ −C
∫
St

|u|2 ds − D
∫

Ωt

e′′(c)√
1 + |∇h|2

∇c · M∇c dx dy − ξ

∫
∂Ωt

|vCL|
2 ds. (3.37)

We remark in the geometric motion case, the first equation in (2.57) is the linear response relation u = KF =
1
β
F . Thus Proposition 3.1

also tells us the Rayleigh dissipation functional Q in (3.18) for the viscous flow is stronger than the one defined in (2.54) for the
geometric motion case. As a consequence of (3.37), we know

∫
+∞

0

∫
St

|u|2 ds dt < +∞.
The third advantage of Proposition 3.1 is the characterization for the steady solution to (3.20). Rigorous proof for the uniform

convergence of the dynamic solutions to its steady state is challenging; see [32] for small data convergence without surfactant. However,
if the limiting solution (the capillary surface) remains a smooth surface, i.e., assume no fattening phenomenon, we will show below the
steady solution u ≡ 0 in Āt , c ≡ const on St and the steady shape St is characterized by a spherical cap with constant mean curvature
while the contact angle being Young’s angle. Specifically:
(i) For the steady solution to (3.20) with Q = 0, we know

∫ e′′(c)
√ ∇c · M∇c dx dy = 0 and thus c ≡ c∗ is constant on St ;
Ωt 1+|∇h|2

14
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ii) As a consequence of (3.37), we know Q = 0 implies
∫
St

|u|2 ds = 0 and thus u = 0 on St . From u = 0 on St ∩ Ωt , the bulk fluids
escribed by the stokes equation satisfy u ≡ 0 in Āt . This uniquely determines σ = −pI with a constant pressure p = const and thus

F = −pn = −γ (c∗)Hn due to (3.21) and c ≡ c∗;
(iii) Therefore the characterization problem is reduced to solve a spherical cap profile with constant mean curvature H =

p
γ (c∗) = const.

enote R as the radius of the spherical cap. Given volume V and total mass M0 of surfactant in (2.5), we solve unknowns {θ, R, c∗
} such

hat

cos θ =
γSG − γSL

γ (c∗)
, V =

πR3

3
(2 + cos θ )(1 − cos θ )2,

M0

c∗
= 2πR2(1 − cos θ ), (3.38)

here we used the volume and area formula for a spherical cap with radius R. Notice γ (c) is strictly decreasing w.r.t. c. The solvability
f these algebraic equations, the uniqueness of the spherical cap solution and the convergence to this steady solution will be left for a
uture study.

emark 2. We also remark under the non-penetration boundary condition u · n = 0 on the bottom of the droplet, the Navier slip
oundary condition on a textured substrate w(x, y) becomes

α

µ
τ · σn + τ · u = 0 on ∂At ∩ {z = w}, (3.39)

which is equivalent to

α (n · ∇)(τ · u) + τ · u = αu · (n · ∇τ + n · ∇τ ) on ∂At ∩ {z = w}. (3.40)

In the case w = 0, then the Navier slip boundary condition is simplified as

τ · u = α∂z(τ · u) on Ωt . (3.41)

4. Algorithms based on unconditionally stable explicit boundary updates

In this section, we propose a numerical scheme for the droplet dynamics with the surfactant on the moving capillary surface. These
mainly rely on decoupling the motion of the contact lines, the motion of the capillary surface, and the dynamics of the surfactant on
the surface. Therefore, we will adapt the 1st/2nd order schemes developed in [9] for the pure geometric motion of single droplets and
then incorporate the constantly changed dynamic surface tension γ (c) due to the dynamics of the surfactant.

To give a clear presentation, we describe the numerical scheme for 2D droplets. For the 3D droplets, the construction of the arbitrary
Lagrangian–Eulerian method for the moving grids need to be developed and will be left for a future study. Before this, we first derive
the governing equations for 2D droplets laid by surfactant but placed on an inclined textured substrate. This is described by the motion
of the capillary surface, the moving contact lines and the transport of the surfactant.

4.1. Contact line dynamics and surfactant effect for 2D droplets on an inclined textured substrate

Given an inclined textured solid substrate, we follow the convention for studying droplets on an inclined substrate and choose the
Cartesian coordinate system built on an inclined plane with effective inclined angle θ0 such that −

π
2 < θ0 < π

2 , i.e., (tan θ0)x is the new
-axis we choose; see Fig. 1(b). With this Cartesian coordinate system, the textured substrate is described by a graph function w(x) and
he droplet is then described by

At := {(x, y); a(t) ≤ x ≤ b(t), w(x) ≤ y ≤ u(x, t) + w(x)}. (4.1)

The motion of this droplet is described by the relative height function of the capillary surface u(x, t) ≥ 0 and the partially wetting
domain a(t) ≤ x ≤ b(t) with free boundaries a(t), b(t).

With the new Cartesian coordinate system, the substrate w(x) and the total height h(x, t) := u(x, t) + w(x), one can use the same
ift-up method in Section 2.1.2 to derive the continuity equation for c(x, t), x ∈ (a(t), b(t)), i.e.

ct − vn∂x

(
c

hx√
1 + h2

x

)
= D∂ssc, ∂s =

1√
1 + h2

x

∂x. (4.2)

This is equivalent to

∂tc − vncx
hx√

1 + h2
x

+ vncH = D∂ssc, H = −∂x

(
hx√

1 + h2
x

)
= −

hxx

(1 + h2
x )

3
2
. (4.3)

Notice the compatibility condition (2.40) on the contact line now changes to

ht |b = −∂xu|bb′, ht |a = −∂xu|aa′ (4.4)

due to u(x(t), t) = 0 at x = a, b. We will compute the rate of change of total energy and derive the governing equations for droplets
placed an inclined textured surface below.
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.2. The rate of change of the total surface energy with a textured substrate

First, we compute the rate of change of the surface energy for the capillary surface.
Multiplying (4.2) by e′(c)

√
1 + h2

x , same derivations as (2.34) gives

∂t

(
e(c)

√
1 + h2

x

)
− γ (c)Hht − ∂x

(
e(c)

hthx√
1 + h2

x

)
= De′(c)∂ssc

√
1 + h2

x . (4.5)

n one hand, integration of the left-hand-side of (4.5) gives∫ b(t)

a(t)
∂t

(
e(c)

√
1 + h2

x

)
− γ (c)Hht dx − e(c)

hxht√
1 + h2

x

⏐⏐⏐b
a

=
d
dt

∫ b(t)

a(t)
e(c)

√
1 + h2

x dx +

∫ b(t)

a(t)
−γ (c)Hht dx − e(c)

hxht√
1 + h2

x

⏐⏐⏐b
a
− b′e(c)

√
1 + h2

x

⏐⏐
b + a′e(c)

√
1 + h2

x

⏐⏐
a

=
d
dt

∫ b(t)

a(t)

(
e(c)

√
1 + h2

x

)
dx −

∫ b(t)

a(t)
γ (c)Hht dx − e(c)Ib + e(c)Ia,

here we used the Reynolds transport theorem and

Ib := b′

√
1 + h2

x

⏐⏐
b +

hxht√
1 + h2

x

⏐⏐⏐
b
, Ia := a′

√
1 + h2

x

⏐⏐
a +

hxht√
1 + h2

x

⏐⏐⏐
a
. (4.6)

Then by compatibility condition (4.4),

Ib = b′

(√
1 + h2

x −
hxux√
1 + h2

x

)
=

b′(1 + hxwx)√
1 + h2

x

⏐⏐⏐
b
, Ia =

a′(1 + hxwx)√
1 + h2

x

⏐⏐⏐
a
. (4.7)

n the other hand, the right-hand-side of (4.5) becomes∫ b

a
De′(c)∂x

(
cx√

1 + h2
x

)
dx = −D

∫ b

a
e′′(c)

c2x√
1 + h2

x

dx + D
∂xe(c)√
1 + h2

x

⏐⏐⏐b
a
.

herefore,

d
dt

∫ b(t)

a(t)

(
e(c)

√
1 + h2

x

)
dx −

∫ b(t)

a(t)
γ (c)htH dx + D

∫ b

a
e′′(c)

c2x√
1 + h2

x

dx

=e(c(b))Ib − e(c(a))Ia + D
∂xe(c)√
1 + h2

x

⏐⏐⏐b
a
.

(4.8)

Particularly for e(c) = c , we have

0 =
d
dt

∫ b(t)

a(t)

(
c
√
1 + h2

x

)
dx = cos θb[Dcx|b+c(b)(1 + hxwx)b′

] − cos θa[Dcx|a+c(a)(1 + hxwx)a′
], (4.9)

here cos θa =
1√
1+h2x

⏐⏐⏐
a
, cos θb =

1√
1+h2x

⏐⏐⏐
b
and θa, θb are the dynamic contact angle at a, b respectively. Same as (2.45), to maintain

the mass conservation law, we impose the Robin boundary condition for surfactant concentration (4.2)

Dcx|b+c(b)(1 + hxwx)|b b′
= 0, Dcx|a+c(a)(1 + hxwx)|a a′

= 0. (4.10)

Using boundary condition (4.10), we further simplify (4.8) as

d
dt

∫ b(t)

a(t)

(
e(c)

√
1 + h2

x

)
dx −

∫ b(t)

a(t)
γ (c)htH dx + D

∫ b

a
e′′(c)

c2x√
1 + h2

x

dx

= cos θb
(
e(c(b))(1 + hxwx)|bb′

+ De′cx|b
)
− cos θa

(
e(c(a))(1 + hxwx)|aa′

+ De′cx|a
)

= cos θbγ (c(b))b′(1 + hxwx)|b− cos θaγ (c(a))a′(1 + hxwx)|a.

(4.11)

Second, we compute the rate of change of the total free energy including the total surface energy and the gravitational potential
nergy.
For a 2D droplet placed on an inclined textured surface, with the gravitational effect and the volume constraint V , we take the total

ree energy of the droplet as

F(h(t), a(t), b(t), λ(t)) =

∫ b(t)

a(t)
e(c)

√
1 + (∂xh)2 dx + (γSL − γSG)

∫ b(t)

a(t)

√
1 + (∂xw)2 dx

+ ρg
∫ b(t)

a(t)

∫ u+w

w

(y cos θ0 + x sin θ0) dy dx − λ(t)
(∫ b(t)

a(t)
u dx − V

)
,

(4.12)

here h = u+w, e(c) is the energy density on the capillary surface, ρ is the density of the liquid, and g is the gravitational acceleration.
Denote κ := ρg .
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Notice the time derivative of the second term in F is
d
dt

(γSL − γSG)
∫ b(t)

a(t)

√
1 + (∂xw)2 dx = (γSL − γSG)

(
b′
√
1 + (∂xw)2|b−a′

√
1 + (∂xw)2|a

)
,

nd from u|a,b= 0, the time derivative of the third term in F is

d
dt

κ

∫ b(t)

a(t)

∫ u+w

w

(y cos θ0 + x sin θ0) dy dx = κ

∫ b(t)

a(t)
ht (h cos θ0 + x sin θ0) dx. (4.13)

This, together with the energy dissipation (4.11), gives

d
dt

F = −

∫ b(t)

a(t)
(−γ (c)H + λ − κ(h cos θ0 + x sin θ0)) ht dx − D

∫ b(t)

a(t)
e′′(c)

c2x√
1 + h2

x

dx

+ b′
[cos θbγ (c(b))(1 + hxwx)|b+(γSL − γSG)

√
1 + (∂xw)2|b]

− a′
[cos θaγ (c(a))(1 + hxwx)|a+(γSL − γSG)

√
1 + (∂xw)2|a].

(4.14)

.3. Energetic considerations: the Onsager principle and the governing equations

Same as Section 2, we choose the Rayleigh dissipation functional as

Q :=
β

2

∫ b(t)

a(t)

h2
t√

1 + h2
x

dx +
ξ

2
(|b′

|
2
+ |a′

|
2) +

D
2

∫ b(t)

a(t)
e′′(c)

c2x√
1 + h2

x

dx. (4.15)

Then by the same derivations as (2.55)–(2.57) for the 3D case, we conclude the governing equations for the full dynamics of a 2D single
droplet on a textured substrate⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β√
1 + h2

x

ht = −γ (c)H − κ(h cos θ0 + x sin θ0) + λ, in (a(t), b(t))

(h − w)|a= 0, (h − w)|b= 0,

ct − vn∂x

(
c

hx√
1 + h2

x

)
= D∂ssc, in (a(t), b(t))

Dcx|b+c(b)b′(1 + hxwx)|b= 0, Dcx|a+c(b)a′(1 + hxwx)|a= 0,

ξb′
= − cos θbγ (c(b))(1 + hxwx)|b−(γSL − γSG)

√
1 + (∂xw)2|b,

ξa′
= cos θaγ (c(a))(1 + hxwx)|a+(γSL − γSG)

√
1 + (∂xw)2|a,∫ b(t)

a(t)
h dx = V ,

(4.16)

where ∂s =
1√
1+h2x

∂x and H = −∂x

(
hx√
1+h2x

)
= −

hxx

(1+h2x )
3
2

is the mean curvature. After taking into account the textured substrate, we

emark that the unbalanced Young force becomes

Fb = − cos θbγ (c(b))(1 + hxwx)|b−(γSL − γSG)
√
1 + (∂xw)2|b, (4.17)

Fa = cos θaγ (c(a))(1 + hxwx)|a+(γSL − γSG)
√
1 + (∂xw)2|a. (4.18)

As a consequence, the energy dissipation relation (2.58) becomes

d
dt

F = −β

∫ b(t)

a(t)

h2
t√

1 + h2
x

dx − D
∫ b

a
e′′(c)

c2x√
1 + h2

x

dx − ξ (|b′
|
2
+ |a′

|
2) = −2Q .

efore proceeding to the computations for the full dynamics (4.16), we recast Eq. (4.3) for the dynamics of surfactant concentration c
s

ct −
hthx

1 + h2
x
cx −

hthxx

(1 + h2
x )2

c = D
cxx

1 + h2
x

−
Dhxhxx

(1 + h2
x )2

cx, (4.19)

hich is a computationally friendly form.

.4. Proposed numerical scheme

We will split the PDE solver for the full dynamics of droplets with surfactant into the following three steps: (i) explicit boundary
pdates; (ii) semi-implicit capillary surface updates and (iii) implicit surfactant updates. The unconditional stability for the explicit 1D
oundary updates is proved in [9], which efficiently decouples the computations of the boundary evolution and the capillary surface
pdates. The semi-implicit capillary surface updates with the volume constraint and the implicit surfactant updates can be converted
o standard elliptic solvers at each step.

Let tn = n∆t , n = 0, 1, . . . with time step ∆t . We approximate a(tn), b(tn), h(tn) by an, bn, hn respectively. We present the first order
cheme as follows. For completeness, we also provide a pseudo-code in Appendix B.
17
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F

T

m

D

B

w

irst order scheme:
Step 1. Explicit boundary updates. Compute the one-side approximated derivative of hn at bn and an, denoted as (∂xhn)N and (∂xhn)0.

hen by the moving contact line boundary conditions in (4.16), we update an+1, bn+1 using

ξ
an+1

− an

∆t
= cos θn

a γ (cn0 )(1 + (hn
x )0(wx)0) + (γSL − γSG)

√
1 + (∂xw)20, cos θn

a =
1√

1 + (hn
x )

2
0

,

ξ
bn+1

− bn

∆t
= − cos θn

b γ (cnN )(1 + (hn
x )N (wx)N ) − (γSL − γSG)

√
1 + (∂xw)2N , cos θn

b =
1√

1 + (hn
x )

2
N

.

(4.20)

Step 2. Rescale hn from [an, bn] to [an+1, bn+1
] with O(∆t2) accuracy using an ALE discretization. For xn+1

∈ [an+1, bn+1
], denote the

ap from moving grids at tn+1 to tn as

xn := an +
bn − an

bn+1 − an+1 (x
n+1

− an+1) ∈ [an, bn]. (4.21)

efine the rescaled solution for hn as

hn∗(xn+1) := hn(xn) + ∂xhn(xn)(xn+1
− xn). (4.22)

y the Taylor expansion, it is easy to verify that hn∗(xn+1) = hn(xn+1)+O(|xn − xn+1
|
2). From [9, (B.11)], we have the first order accuracy

of

∂th(xn+1, tn+1) =
h(xn+1, tn+1) − hn∗(xn+1, tn)

∆t
+ O(∆t). (4.23)

Step 3. Capillary surface updates with the volume constraint. Update hn+1 and λn+1 semi-implicitly.

β√
1 + (∂xhn∗)2

hn+1
− hn∗

∆t
=

γ (cn)

(1 + (∂xhn∗)2)
3
2
∂xxhn+1

− κ(hn+1 cos θ0 + xn+1 sin θ0) + λn+1,

hn+1(an+1) = w(an+1), hn+1(bn+1) = w(bn+1),∫ bn+1

an+1
un+1(xn+1) dxn+1

=

∫ b0

a0
u0(x0) dx0,

(4.24)

where the independent variable is xn+1
∈ (an+1, bn+1).

Step 4. Update the concentration of surfactant.

(ht )n+1
:=

hn+1
− hn∗

∆t
,

(1 + (hn+1
x )2)

cn+1
− cn

∆t
= D∂xxcn+1

−
Dhn+1

x hn+1
xx

1 + (hn+1
x )2

∂xcn + hn+1
t hn+1

x ∂xcn +
hn+1
t hn+1

xx

1 + (hn+1
x )2

cn
(4.25)

ith boundary conditions

D(cx)n+1
0 + cn+1

0 (1 + (hx)0(wx)0)
an+1

− an

∆t
= 0, D(cx)n+1

N + cn+1
N (1 + (hx)N (wx)N )

bn+1
− bn

∆t
= 0. (4.26)

We remark that the second order numerical scheme developed in [9] can be adapted here. When there are topological changes
of droplets such as splitting and merging due to an impermeable textured substrate, the projection method for solving variational
inequalities developed in [33] can also be adapted.

5. Computations for droplets with dynamic surface tension

We now use the numerical scheme in Section 4.4 to demonstrate several challenging examples: (i) the surface tension decreasing
phenomena and asymmetric capillary surfaces due to the presence of the surfactant; (ii) the enhanced contact angle hysteresis or
resistance with gravity for droplets placed on an inclined substrate; (iii) droplets on a textured substrate or in a container with different
surfactant concentrations.

5.1. Surface tension decreasing phenomena and asymmetric capillary surface due to the presence of surfactant

In the first example, we compute the spreading of a droplet placed on a flat plane to observe the surface tension decreasing
phenomena due to the presence of different concentrations of surfactant.

First, we set the initial droplet as a spherical cap profile

h(x, 0) =

√
R2 − x2 − R cos(θin) with R =

b0
θin

, b0 = 3.7, θin =
3π
16

(5.1)

and the computational parameters as follows

β = 0.1, κ = 0.5, γ − γ = −0.7, ξ = 1; D = 0.1; T = 1.5; ∆t = 0.015, N = 800. (5.2)
SL SG
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Fig. 2. Spreading of droplets on a plane with lower surface tension due to the surfactant effect. 1st: Time evolution of the capillary surface without the surfactant
starting from an initial profile (5.1) marked with black pentagrams to a droplet profile marked with black circles at the final time T = 1.5. 2nd: With initial
oncentration c = 0.8, the flatten droplet with a pancake shape is shown with a density-patched surface at T = 1.5. 3rd: With an asymmetric initial concentration
5.4), an asymmetric evolution with the surfactant ‘drag’ effect is shown at equal time intervals and at T = 1.5. 4th: The asymmetric profile dragged by surfactant
ith initial concentration (5.4) turns out to be symmetric with approximated constant-concentration of surfactant at T = 25. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

ollowing (2.35), the surfactant-dependent surface tension γ (c) is taken to be

γ (c) = γ0 + ln(1 − c) with γ0 = 2. (5.3)

This means γ (c) is decreasing w.r.t c and if c = 0, the equilibrium Young’s angle is given by cos θY = −
γSL−γSG

γ0
= 0.35.

In Fig. 2 (1st), we first take c = 0 and compute the spreading process without the surfactant starting from the initial droplet
(5.1) to time T = 1.5. We observe the initial symmetric droplet (marked with black pentagrams) tends to shrink to it’s equilibrium
symmetrically; see the symmetric droplet profile at T = 1.5 (marked with black circles). Notice the dynamics of the concentration of
surfactant c is shown on the capillary surface using different color; see color bar on the right side of the figures. The evolution of the
capillary surface is drawn at equal time intervals with solid thin lines and patched with color showing the surfactant concentration.

Then in Fig. 2 (2nd), we take a uniform initial concentration of surfactant c(x, 0) = 0.8 and start from the same initial symmetric
droplet, which is marked with black pentagrams and is patched with a uniform color. We observe that, as time increases to T = 1.5,
the droplet tends to spread out like a thin film due to the lower effective surface tension γ (c); see the flatten droplet profile at T = 1.5
(marked with black circles). During the spreading process, the concentration of the surfactant at two contact endpoints decreases, so
we observe the droplet still holds a pancake shape instead of completely spreading out; see similar droplet profiles in the lubrication
model [26,34].

To see the significant contribution of different surfactant concentrations to the droplet profile, we use the same initial capillary
surface (marked with black pentagrams) but take an asymmetric initial concentration of the surfactant in Fig. 2 (3rd). Explicitly, we
take initial concentration as

c(x, 0) = 0.5 +
0.6
π

arctan(100x), (5.4)

which increases from 0.2 to 0.8 with a sharp transition; see the patched curve marked with black pentagrams. Then as time increases,
the surfactant ‘drags’ the droplet to the right and induces an asymmetric motion. We can observe an advancing contact angle and a
receding contact angle in the droplet profile at T = 1.5 (marked with black circles). To further observe the long time behaviors of
the droplets, with the same initial asymmetric concentration of surfactant (5.4), we compute the dynamics of the droplet profile up to
19
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Fig. 3. Enhanced CAH and resistance with the gravity due to asymmetric concentration of surfactant for a droplet placed on an inclined substrate with θ0 = 0.3.
upper) Time evolution of the capillary surface without the surfactant starting from an initial profile (5.1) marked with black pentagrams to a droplet profile marked
ith black circles at a final time T = 2. (middle) With the initial concentration (5.6), the significant enhancement of rolling down and the CAH phenomena are
hown with density-patched surfaces at equal time intervals and at T = 2. (lower) With the initial concentration (5.7), the droplet rises up instead of rolling down
ecause the surfactant effect wins the competition with the gravity.

= 25. We use same computational parameters as in (5.2) except T = 25, ∆t = 0.125, N = 1600. The asymmetric droplet profile
ragged by surfactant becomes symmetric again with approximated constant-concentration of surfactant at T = 20. This is a numerical
ustification for the convergence of dynamic solution to the steady spherical cap solution given in (3.38).

.2. Droplet on an inclined surface

In the second example, we compute the spreading of a droplet placed on an inclined substrate to observe the competition between
he gravitational effect and the surfactant-dependent capillary effect due to the presence of different concentration of the surfactant.

We use the same initial droplet profile (5.1) and take the inclined angle θ0 = 0.3 for the substrate. We use the following
omputational parameters in Fig. 3

β = 0.1, κ = 0.5, γSL − γSG = −0.75, ξ = 1, D = 0.1, ∆t = 0.02, N = 800. (5.5)

Same as Fig. 2, the evolution of the capillary surface is drawn at equal time intervals with solid thin lines and patched with color
showing surfactant concentration.

In Fig. 3 (upper one), we take c = 0 and compute the evolution of a droplet without surfactant as a comparison. We can observe
the contact angle hysteresis (CAH) in the droplet profile at T = 2 (marked with black circles) with an advancing contact angle and a
receding contact angle due to the gravity, which is unapparent.
20
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Fig. 4. The upper figure is the time evolution of a droplet in a cocktail glass with a uniform initial concentration of surfactant. The initial profile (5.9) is marked
with black pentagrams while the density-patched capillary surface at the final time T = 4 is marked with black circles. The lower figure is the time evolution of
droplet on an inclined textured substrate (5.11). An asymmetric rising up starting from (5.12) is shown with the density-patched capillary surfaces at equal time

ntervals and at T = 2.

However, in Fig. 3 (middle one), to see the enhanced CAH due to the surfactant effect, we take an asymmetric initial concentration

c(x, 0) = 0.45 −
0.5
π

arctan(100x), (5.6)

which decreases from 0.7 to 0.2 with a sharp transition; see the patched curve marked with black pentagrams in Fig. 3 (middle one).
As time increases, we see the gravity and the asymmetric concentration of the surfactant (left part higher than the right part of the
capillary surface) accelerate the rolling down of the droplet. Then droplet profile at T = 2 is marked with black circles and patched
with the surfactant concentration, in which we observe a significant enhancement of CAH phenomena with very different advancing
contact angles and receding contact angles. On the other hand, if we switch the initial concentration of the surfactant to

c(x, 0) = 0.45 +
0.5
π

arctan(100x) (5.7)

so that the right part has higher concentration than the left part of the capillary surface. Then in Fig. 3 (lower one), we observe the
surfactant effect wins the competition with the gravity and the droplet even rises up instead of rolling down; see the droplet profile
at T = 2 (marked with black circles).

5.3. Droplets on a textured substrate and in a cocktail glass

In the third example, we compute the spreading of a droplet on some typical textured substrates such as a cocktail glass and a
substrate with constantly changed effective slope. The common computational parameters are

β = 0.1, κ = 0.5, ξ = 1; D = 0.5; ∆t = 0.02. (5.8)

In Fig. 4 (upper), we take the initial droplet profile (marked with black pentagrams) as

h(x, 0) =

√
R2 − x2 − R cos(θin) + w(b0) +

[w(b0) − w(−b0)](x + b0)
2b0

, R =
b0
θin

, b0 = 3.7 (5.9)

with θin =
3π
16 and a cocktail glass substrate

w(x) = 0.5
√
x2 + 0.1. (5.10)

Then taking γSL − γSG = −0.9, N = 1600 and the initial concentration of the surfactant as c(x, 0) = 0.2, time evolution of the
ensity-patched capillary surfaces is shown at equal time intervals and at the final time T = 4 (marked with black circles). We observe
he capillary rise near the contact lines and the surfactant tends to push themselves and concentrate near the contact lines.

In Fig. 4 (lower), we take the initial droplet profile (marked with black pentagrams) as (5.9) with θin =
1.3π
8 , an effective inclined

ngle θ0 = 0.2 and a textured substrate

w(x) = 0.1 (sin(2x) + cos(4x))2 . (5.11)

hen taking γSL − γSG = −0.5, N = 800 and the initial asymmetric concentration of the surfactant as

c(x, 0) = 0.45 +
0.7

arctan(100x), (5.12)

π
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ime evolution of the density-patched capillary surfaces is shown at equal time intervals and at final time T = 2 (marked with black
ircles). We observe an asymmetric rising up of the droplet due to the asymmetric initial concentration and the constantly changed
ffective slope of the textured substrate.
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Appendix A. Proof of Proposition 2.1

Proof of Proposition 2.1. Recall the continuity equation (2.18) on wetting domain Ωt and the relation (2.14) between c and C. We
hen have

0 =∂t

(
c
√
1 + |∇h|2

)
+ ∇ ·

(
c
√
1 + |∇h|2vxy

)
=

√
1 + |∇h|2

(
(∂t + vxy · ∇xy)c

)
+ c

(
∂t

√
1 + |∇h|2 + ∇xy ·

(√
1 + |∇h|2vxy

))
=

√
1 + |∇h|2 ((∂t + v · ∇)C) + C

(
∂t

√
1 + |∇h|2 + ∇xy ·

(√
1 + |∇h|2vxy

)) (A.1)

where vxy :=

(
v1
v2

)
=

(
−hthx

1+|∇h|2
−hthy

1+|∇h|2

)
+

(
f
g

)
due to (2.15).

First, for the last term in (A.1), using the identity (2.33), we have

∂t

√
1 + |∇h|2 + ∇xy ·

(√
1 + |∇h|2vxy

)
= htH + ∇xy ·

(√
1 + |∇h|2

(
f
g

))
. (A.2)

This, together with (A.1), gives the equation for C

((∂t + v · ∇)C) + CvnH +
1√

1 + |∇h|2
∇xy ·

(√
1 + |∇h|2

(
f
g

))
= 0. (A.3)

Second, we prove the following claim

∇s · vs =
1√

1 + |∇h|2
∇xy ·

(√
1 + |∇h|2

(
f
g

))
= ∂xf + ∂yg +

1
2

(
f
g

)
·
∇xy(|∇h|2)
1 + |∇h|2

. (A.4)

Recall the tangential velocity on St

vs(x, y, h(x, y, t), t) = v − vnn = f τ1 + gτ2 =

⎛⎝ f̃
g̃

hx f̃ + hyg̃

⎞⎠ , f̃ (x, y, h(x, y, t)) = f (x, y, t), g̃(x, y, h(x, y, t)) = g(x, y, t). (A.5)

By the chain rule, we have

∇ · vs|z=h(x,y,t)=

(
∂x f̃ + ∂yg̃ + hx∂z f̃ + hy∂z g̃

) ⏐⏐
z=h(x,y,t) = ∂xf + ∂yg. (A.6)

On the other hand,

− n(n · ∇)vs = −
1

1 + |∇h|2

(
−hx
−hy
1

)
· (−hx∂x − hy∂y + ∂z)

⎛⎝ f̃
g̃

hx f̃ + hyg̃

⎞⎠
=

1
1 + |∇h|2

(
f (hxx + hxy) + g(hxy + hyy)

)
=

1
2

(
f
g

)
·
∇xy(|∇h|2)
1 + |∇h|2

.

(A.7)

Combining (A.6) and (A.7) yields (A.4). □
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ppendix B. Pseudo-code for first order scheme

Below, we present a pseudo-code for the first order scheme in Section 4.4.
. Grid for time: tn = n∆t , n = 0, 1, . . ., where ∆t is time step.
. Fix N and set moving grids for space: xnj = an + jτ n, τ n

=
bn−an

N , j = −1, 0, 1, . . . ,N + 1.
. Calculate volume V :=

∑N−1
j=1 (h0

− w)(x0j )τ
0.

. Denote the finite difference operators

(∂xh)n0 =
4hn

1 − hn
2 − 3hn

0

2τ n , (∂xh)nN =
−4hn

N−1 + hn
N−2 + 3hn

N

2τ n ,

(∂xh)nj =
hn
j+1 − hn

j−1

2τ n , (∂xxh)nj =
hn
j+1 − 2hn

j + hn
j−1

(τ n)2
, j = 1, . . . ,N − 1.

(B.1)

enote

(∂xw)0 := ∂xw(xn0), (∂xw)N := ∂xw(xnN ), γ n
i := γ (cni ), i = 0, . . . ,N.

5. Update an+1, bn+1, j = 0, 1, . . . ,N ,

ξ
an+1

− an

∆t
= γ n

0
1 + (∂xhn)0(∂xw)0√

1 + (∂xhn)20
+ (γSL − γSG)

√
1 + (∂xw)20,

ξ
bn+1

− bn

∆t
= −γ n

N
1 + (∂xhn)N (∂xw)N√

1 + (∂xhn)2N
− (γSL − γSG)

√
1 + (∂xw)2N .

. Update the moving grids xn+1
j = an+1

+ jτ n+1, τ n+1
=

bn+1
−an+1

N , j = 0, 1, . . . ,N .
7. From (4.22), hn∗

j = hn
j + (∂xhn)j(an+1

− an + j(τ n+1
− τ n)), j = 0, . . . ,N .

8. Solve hn+1 semi-implicitly
For j = 1, . . . ,N − 1, denote αj = 1 + (h2

x )
n
j and solve

βαj
hn+1
j − hn∗

j

∆t
= γ n

j

hn+1
j+1 − 2hn+1

j + hn+1
j−1

(τ n+1)2
− κα

3/2
j (hn+1

j cos θ0 + xn+1
j sin θ0) + λn+1α

3/2
j , (B.2)

N−1∑
j=1

(hn+1
j − w(xn+1

j ))τ n+1
= V ,

ith the Dirichlet boundary condition hn+1
0 = w(xn+1

0 ), hn+1
N = w(xn+1

N ).
Denote a positive-definite matrix A(N−1)×(N−1) = (aij) with

aj,j−1 := −γ n
j , aj,j+1 := −γ n

j , aj,j := 2γ n
j +

β(τn+1)2

∆t αj + κ cos θ0(τ n+1)2α
3
2
j

(B.3)

nd a vector of length N − 1

f̃j :=
β(τ n+1)2

∆t
hn∗
j αj − κ sin θ0xn+1

j (τ n+1)2α
3
2
j , j = 1, . . . ,N − 1

nd (B.2) becomes for j = 1, . . . ,N − 1,

aj,j−1hn+1
j−1 + aj,jhn+1

j + aj,j+1hn+1
j+1 − α

3
2
j (τ n+1)2λn+1

= f̃j. (B.4)

enote

f1 = f̃1 + γ n
1 w(xn+1

0 ), {fj = f̃j}N−2
j=2 , fN−1 = f̃N−1 + γ n

N−1w(xn+1
N ), fN :=

N−1∑
j=1

w(xn+1
j ) +

V
τ n+1 . (B.5)

he resulting linear system Āy = f has a non-singular matrix

Ā =

(
A α

3
2

e⊤ 0

)
N×N

, (B.6)

here y⊤
= (hn+1

1 , . . . , hn+1
N−1, −(τ n+1)2λn+1) and e⊤

= (1, . . . , 1) ∈ RN−1.
9. Solve cn+1 from (4.25) implicitly.

Denote

(ht )n+1
j :=

hn+1
j − hn∗

j

∆t
, f̃j := −D

(hx)n+1
j (hxx)n+1

j

1 + (h2
x )

n+1
j

(cx)nj + (ht )n+1
j (hx)n+1

j (cx)nj +
(ht )n+1

j (hxx)n+1
j

1 + (h2
x )

n+1
j

cnj , j = 1, . . . ,N − 1.

Then (4.25) becomes
,

(1 + (h2
x )

n+1
j )

cn+1
j − cnj

= D
cn+1
j+1 − 2cn+1

j + cn+1
j−1

+ f̃j, j = 1, . . . ,N − 1
(B.7)
∆t (τ n+1)2
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w

w

t

i

ith boundary conditions

D(cx)n+1
0 + cn+1

0 (1 + (hx)0(wx)0)
an+1

− an

∆t
= 0,

D(cx)n+1
N + cn+1

N (1 + (hx)N (wx)N )
bn+1

− bn

∆t
= 0,

(B.8)

here

(∂xc)n+1
0 =

4cn+1
1 − cn+1

2 − 3cn+1
0

2τ n+1 , (∂xc)n+1
N =

−4cn+1
N−1 + cn+1

N−2 + 3cn+1
N

2τ n+1 .

Let

ι0 :=
2τ n+1

D
(1 + (hx)0(wx)0)

an+1
− an

∆t
, ιN :=

2τ n+1

D
(1 + (hx)N (wx)N )

bn+1
− bn

∆t
,

hen boundary condition (B.8) becomes

(ι0 − 3)cn+1
0 + 4cn+1

1 − cn+1
2 = 0, cn+1

N−2 − 4cn+1
N−1 + (ιN + 3)cn+1

N = 0.

Now we recast (B.7) in a N + 1 order matrix form

Bcn+1
= f , B = (bij)i,j=0,...,N

where, for i = 0, b00 = ι0 − 3, b01 = 4, b02 = −1; for i = 1, . . . ,N − 1, bi,i−1 = −1, bi,i = 2 +
(τn+1)2
D∆t (1 + (h2

x )
n+1
i ), bi,i+1 = −1; for

= N , bN,N−2 = 1, bN,N−1 = −4, bN,N = ιN + 3 and f0 = 0, fN = 0, fi =
(τn+1)2

D

(
f̃i +

1+(h2x )
n+1
i

∆t cnj

)
, i = 1, . . . ,N − 1.
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