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Abstract

Most biochemical reactions in living cells are open systems interacting with environment
through chemostats to exchange both energy and materials. Ata mesoscopic scale, the number
of each species in those biochemical reactions can be modeled by a random time-changed
Poisson processes. To characterize macroscopic behaviors in the large number limit, the law of
large numbers in the path space determines a mean-field limit nonlinear reaction rate equation
describing the dynamics of the concentration of species, while the WKB expansion for the
chemical master equation yields a Hamilton—Jacobi equation and the Legendre transform
of the corresponding Hamiltonian gives the good rate function (action functional) in the
large deviation principle. In this paper, we decompose a general macroscopic reaction rate
equation into a conservative part and a dissipative part in terms of the stationary solution to the
Hamilton—Jacobi equation. This stationary solution is used to determine the energy landscape
and thermodynamics for general chemical reactions, which particularly maintains a positive
entropy production rate at a non-equilibrium steady state. The associated energy dissipation
law at both the mesoscopic and macroscopic levels is proved together with a passage from the
mesoscopic to macroscopic one. A non-convex energy landscape emerges from the convex
mesoscopic relative entropy functional in the large number limit, which picks up the non-
equilibrium features. The existence of this stationary solution is ensured by the optimal
control representation at an undetermined time horizon for the weak KAM solution to the
stationary Hamilton—Jacobi equation. Furthermore, we use a symmetric Hamiltonian to study
a class of non-equilibrium enzyme reactions, which leads to nonconvex energy landscape
due to flux grouping degeneracy and reduces the conservative—dissipative decomposition to
an Onsager-type strong gradient flow. This symmetric Hamiltonian implies that the transition
paths between multiple steady states (rare events in biochemical reactions) is a modified time
reversed least action path with associated path affinities and energy barriers. We illustrate this
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idea through a bistable catalysis reaction and compute the energy barrier for the transition
path connecting two steady states via its energy landscape.

Keywords Conservative—dissipative decomposition - Positive entropy production rate -
Time reversal - Transition path with energy barrier - Thermodynamic limit - Large deviation
principle
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1 Introduction

At a mesoscopic scale, chemical or biochemical reactions can be understood from a prob-
abilistic viewpoint. A convenient way to stochastically describe chemical reactions is via
random time-changed Poisson processes; c.f. [3]. Based on this, one can observe ‘statistical
properties’ of chemical reactions in the thermodynamic limit. For instance, the law of large
numbers gives the ‘mean path’ of a chemical reaction while the large deviation principle can
give rough estimates on the probability of the occurrence in a vicinity of any path, particularly
the transition path (the most probable path) between two stable states; c.f. [21]. In this paper,
we investigate various macroscopic behaviors for general chemical reactions, including the
conservative—dissipative decomposition for macroscopic dynamics, the passage from meso-
scopic to macroscopic free energy dissipation relations and symmetric structures brought by
Markov chain detailed balance in some enzyme reactions. The studies for non-equilibrium
thermodynamics and metastability in biochemical oscillations was pioneered by Prigogine
[58]. The coexistence of multiple stable steady states breaks the chemical version detailed
balance (1.12) or complex balance (2.6) properties for chemical reactions and leads to bifurca-
tions and transition paths. However, some enzyme reactions, most important non-equilibrium
reactions in an open system to maintain metabolite concentrations, can still be characterized
by a process with a Markov chain detailed balance (4.3). This mesoscopic reaction process
yields the energy landscape ¥** of the chemical reaction and the corresponding macroscopic
Hamiltonian is symmetric w.r.t Vir**; see (4.5). This enables us to study transition paths,
energy barriers and gradient flow structures for a class of non-equilibrium dynamics with
multiple steady states. Before we introduce the main results, we first review some back-
grounds for the macroscopic limiting ODE from the large number limit of the mesoscopic
stochastic processes and backgrounds for the Wentzel-Kramers—Brillouin (WKB) expansion,
a corresponding Hamiltonian H and the good rate function in an associated large deviation
principle.

Background for Large Number Process and Its Macroscopic Limiting ODE
Chemical reaction withi = 1, ..., N species X; and j = 1, ..., M reactions can be kine-
matically described as

kT
reaction j : Zu;X,- % Zvj_iXi, (1.1)
i i

J

where nonnegative integers vﬁ > 0 are stoichiometric coefficients and kf > 0 are reaction

rates for the j-th forward/backward reactions. Denote v;; := (vj: - v;) as the net change
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in molecular numbers for species X; in the j-th forward reaction. The M x N matrix v :=
(vj,') ,j=1,...,M,i =1,...,N as the Wegscheider matrix and v’ is referred as the

stoichiometric matrix [51]. The column vector v; := T)j_ - 17;“ = (v; - v;) € ZN is
. i=1:N

called the reaction vector for the j-th reaction. In this paper, all vectors X = (Xi)i—1.xy €RY

and ((pj)j:hM, (kf)j=1:M € RM are column vectors. We remark the description (1.1)

includes reactions both in a closed system and an open system. In an open system, T)}L =

0 represents birth/death reaction with the corresponding reactant on the right hand side
called chemostats and birth rate k;.r, death rate k;; see a bistable example in Sect. 4.4 for
materials/energy exchange with environment.

Let the space of natural numbers N be the state space of the counting process X; (¢) and let
Xi(t) e Nfori = 1,..., N be the number of each species in those biochemical reactions.
The random time-changed Poisson representation for chemical reactions (1.1) is, c.f. [3, 44],

M
V(1) — ¥ > _ + (+ _ — [
X = X0+ 305 (Lo in,20Y () = Ligers,2077 (7))
i=1 (1.2)

t
z”jF(r) ::/0 Af(s) ds,

where for the j-th reaction channel, Y;—L (t) are i.i.d. unit rate Poisson processes and 1 is

the characteristic function indicating that there is no reaction if the next state X (t_)£v j is
negative for some component. Here and in the following a vector X > 0 is understood as
componentwisely nonnegative. The existence and uniqueness to the stochastic equation (1.2)
was proved by [3, 44] in terms of the corresponding martingale problem. In (1.2), the intensity
function )»i(s) = <pjE ()} (s)) for the time clock ff (t) is usually chosen as the mesoscopic
law of mass action (LMA)

N X!
07 X =k V[
=1 Vit (X@ - Uﬂ)!

Here V' > 1 is the volume for species in the chemical reaction in a container. Because
we assume chemical reactions in a container is independent of molecule position and the
molecular number is proportional to the container volume, we call the limit for the large
number of molecules as thermodynamic limit or macroscopic limit. Rescale the process (1.2)

(1.3)

as C} = % and denote the rescaled discrete state variable as X, := ’7’, i € NV Denote the
forward and backward rescaled fluxes as éji (x,) = (ﬂ’T(n) Then the large number process

C" satisfies

M - t
v v vf] ~ + FHt v
C'(t) =C"(0) + ; v <1{C"(t_)+%z()}yj (V/(; q)j (C'(s)) ds)

t
]l{CV(L 71‘{30}1//' <V/o P, (C7(s)) dS) )

The ‘no reaction’ constraints above is to ensure that there is actually no jump if the number
of some species will be negative in the container.

For a chemical reaction modeled by (1.2), denote the counting probability of C¥(¢) as
p(x,, 1) = E(1z, (C* (1)), where 13, is the indicator function. Then p(x,, t) satisfies the
chemical master equation (CME), c.f. [3]

(1.4)
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M

4G = (O G t) = bt — V(i —
P =@IPGE. D=V 3] (cb,-(xv LI

Vj xS >
v 0~ & EIPG, r))

J=1%— 420

Ma

R PR S
+V (q;/. , + vj)p(xv + V] 1 —®7 (x)p(,, z)) :
/lvv+ L >0

(1.5)

Here QF is the transpose of the generator Q, of process C¥(¢). Here we call the constraint
X, £V 7h > 0 the ‘no reaction’ boundary condition for CME which inherits from (1.4); see
[24]. In [3, 43], this ‘no reaction’ restriction was omitted in the process C", thus to derive the
master equation and generator including this ‘no reaction’ constraint, we give a pedagogical
derivation in Appendix A. We refer to [28] for the existence and regularity of solutions to
CME.

The mesoscopic jumping process C* in (1.4) can be regarded as a large number interacting
particle system. In the large number limit (thermodynamic limit), this interacting particle
system can be approximately described by a mean field equation, i.e., a macroscopic nonlinear
chemical reaction-rate equation. If the law of large numbers in the mean field limit holds, i.e.,
p(X,, 1) — 85 for some X (¢), then the limit X (¢) describes the dynamics of the concentration
of N species in the continuous state space R_’X = {¥ € R";x; > 0} and is given by the
following reaction rate equation (RRE), also known as chemical kinetic rate equation,

M
%2 =Y 0 (97 - 7). (1.6)
j=1

Here the macroscopic fluxes <I>f satisfy the macroscopic LMA

N
+
TE) =k [[ o, (1.7)
=1
which can be viewed as a large number approximation for the mesoscopic LMA (1.3).
This RRE with LMA were first proposed by Guldberg and Waage in 1864. The limiting

macroscopic LMA in RRE (1.6) is same as long as the mesoscopic LMA satisfies (p’ M) A

j (xv) = kji ]_[ r—1 (xg) Jf. Indeed, Kurtz [43] proved the law of large numbers for the large
number process C*(¢); c.f., [3, Theorem 4.1]. Suppose @Ji islocal Lipschitz. If C¥(0) — x(0)
as V — 400, then forany ¢ > 0,¢ > 0,

lim P{sup |[C"(s) — X(s)| > ¢} =0. (1.8)
Vo400 g<s<t
Thus we will also call the large number limiting ODE (1.6) as the macroscopic RRE. This
gives a passage from the mesoscopic LMA (1.3) to the macroscopic one (1.7). In Appendix B,
we give a pedagogical derivation for this mean field limit result (1.8) to include ‘no reaction’
boundary condition. We also refer to recent results in [49] which proves the evolutionary
["-convergence from CME to the Liouville equation and thus starting from a deterministic
state Xo, [49, Theorem 4.7] recovers Kurtz’s results on the mean field limit of CME.
If there exists a positive vector m € ]Ri’ (for instance due to the conservation of mass for
each reaction j in a closed system) such that

Viem=0, j=12,...,M, (1.9)
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where m = (m;);=1.y and m; represents the molecular weight for the i-th species, then the
Wegscheider matrix v has a nonzero kernel, i.e., dim (Ker(v)) > 1 and we have a direct
decomposition for the species space

RY = Ran(v") @ Ker(v). (1.10)

Denote the stoichiometric space G := Ran(v”). Given an initial state )20 €qg+G,q €
Ker(v), the dynamics of both mesoscopic (1.4) and macroscopic (1.6) states stay in the
same space G, := g + G, called a stoichiometric compatibility class. We will see later the
corresponding Hamiltonian/Lagrangian from WKB expansion for (1.5) are strictly convex
in G while degenerate in Ker(v). Below we discuss the uniqueness of steady states within
one stoichiometric compatibility class for the RRE detailed/complex balance case.

Denote a steady state to RRE (1.6) as x®°, which satisfies

M
35 (cbj(zS)—@;(zS)) —0. (1.11)

j=1

The detailed balance condition for RRE (1.6) is defined by Wegscheider 1901, Lewis 1925
as: (i) there exists a x® > 0 (componentwise); and (ii) X* satisfies

@j(iS) —®;(X) =0, Vj. (1.12)

We call RRE (1.6) detailed balanced if there exists such a detailed balanced state x®. This
immediately gives a necessary condition that both kf > 0, i.e., the reaction is reversible.
This concept of detailed balance for RRE (1.12) is commonly used in chemistry and biology,
while itis different from the Markov chain detailed balance condition (4.3) for the mesoscopic
jump process C". The latter is a more proper mathematical definition for the detailed balance
condition and includes some non-equilibrium reactions which can not be characterized via
the more constrained chemical version detailed balance (1.12); see Sect. 4. We will use both
concepts in this paper, so we call (1.12) the detailed balance for RRE and (4.3) the Markov
chain detailed balance for CME, respectively.

Under RRE detailed balance condition (1.12), all the positive steady solutions to (1.6)
are detailed balanced and are characterized by ¥%ed > 0 for some g € Ker(v). This is also
true for a weaker condition called the complex balance condition (2.6). We summarize the
well-known result on the uniqueness of the RRE detailed/complex balanced steady state
discovered in [31, Theorem 6A] ([3, Theorem 3.5]) as Lemma 2.2 and the deficiency zero
theorem proved by Horn and Feinberg [16, 31] is revisited in Sect. 2.2.1. Lemma 2.2 says
that for each stoichiometric compatibility class, there is only one equilibrium steady state for
a detailed/complex balanced RRE system.

On the contrary, non-equilibrium chemical reaction system has coexistent steady states
and nonzero steady fluxes, so how to find transition paths between different non-equilibrium
steady states and to compute the corresponding energy barriers for the macroscopic RRE
(1.6) are the main goals of this paper. Particularly, in many biochemical reactions, such as
heterogeneous catalytic oxidations and some enzyme reactions, the RRE detailed/complex
balance conditions do not hold. We will use a symmetric Hamiltonian (1.26) to study some
non-equilibrium reaction dynamics, which enables us to explore Onsager’s strong form gra-
dient flow structure (see (4.17)) and to compute the explicit transition path formula with
the associated path affinity (see Proposition 4.6). Before describing our main results, let us
further review some important properties for a Hamiltonian raising from WKB expansion of
p(X,, t) below.
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Background for WKB Expansion, Hamiltonian and Large Deviation Principle for
Chemical Reactions

Besides the macroscopic trajectory X (t) given by the law of large numbers, WKB expansion
for p(X,, t) in CME (1.5) is another standard method [12, 27, 33, 38, 71], which builds up a
more informative bridge between the mesoscopic dynamics and the macroscopic behaviors.
We remark the WKB expansion has different names in different fields, such as the eikonal
approximation, or the instanton technique, or the nonlinear semigroup, or the Cole—Hopf
transformation.

To characterize the exponential asymptotic behavior, we assume there exists a continuous
function v (X, t) such that p(X,, t) has a WKB reformulation

pE, 1) =e VD bR, 0) = po(R,). (1.13)

The fluctuation on path space, i.e., the large deviation principle, can be computed through
WKB expansion, and the good rate function for the large number process in a chemical
reaction is rigorously proved by Agazzi et al. in [2, Theorem 1.6]; see explanations below.
We know v satisfies

- 1 z T 1 . 1 -
O (e, 1) = ="V QYO = — S HY (V). (R, 0) = — - log po(F).
(1.14)

By Taylor’s expansion of v (x 4 %, t)in (1.5) and (1.14), we obtain the following Hamilton—
Jacobi equation (HJE) for the rescaled master equation (1.5) for ¢

U (F 1) = — % (cp;r(z) (e”"fW@” - 1) + @) (e—”‘f'Wf(M - 1)) - (1.15)

j=1
see also derivations for (2.23) later. Define Hamiltonian H (p, X) on RN x RN as

M

H(p.5) =) (qﬁ(})ﬂf’ﬁ — ot () + @;(i)e—”?'ﬁ - q>]f(£)) . (1.16)
j=1
Then the HIE for v (X, t) can be recast as

v+ H(VY, %) = 0. (1.17)

The WKB analysis above defines a Hamiltonian H (p, x), which contains almost all the
information for the macroscopic dynamics. We remark this kind of WKB expansion was first
used by Kubo et al. [38] for master equations for general Markov processes and later was
applied to CME by Hu in [33]. In [12], Dykman et al. first derived the HJE (1.17) with the
associated Hamiltonian H in (1.16) and reviewed the symmetry of Hamiltonian H in the
RRE detailed balance case H(p, X) = H(log % — p, X).

Equivalent to WKB reformulation for CME, one can define Varadhan’s nonlinear semi-
group [18, 73] for process C"(t) via the WKB reformulation for the backward equation

R 1 2 v -
u(®, 1 =+ log E* (eV“0<Cr>) =: (Siup) (%) (1.18)
and as V — +o00, with the same Hamiltonian H, u(xX, t) satisfies

du — H(Vu,X) =0. (1.19)
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Comparing with (1.17), the limiting HJE after WKB expansion for forward and backward

equation only has a sign difference in the time derivative. The rigorous convergence from the
Varadhan’s nonlinear semigroup (1.18) to the viscosity solution of HJE (1.19) was proved in
[24] by reformulating (1.18) as a monotone scheme to HJE (1.19). Two difficulties brought
by the ‘no reaction” boundary condition and the polynomial growth rate for the coefficients
dD()?);'F in Hamiltonian when constructing unique viscosity solution were overcame in [24]
by constructing upper/semicontinuous envelopes which inherit the ‘no reaction’ constraint
and by constructing barriers to control far field values. Based on this convergence and the
Lax—Oleinik’s representation for the viscosity solution to HJE (1.19)

t
u@ 0= sup (uo(y) = I, (M), L) = _ inf / L(y(s), y(s)) ds,
FeRN yO)=x,y 0=y Jo

(1.20)

[24] verified the Varadhan’s inverse lemma for the large deviation principle [10]. Here L is
the convex conjugate of H and Iz ,(y) is the least action between fixed initial point X and
ending point y at time 7. The Lax—Oleinik’s representation for u(x, r) can be interpreted as
a deterministic optimal control problem with terminal profit u at ¢ and running cost given
by the least action /; ;. Combining this convergence with the exponential tightness of C"(r)
at single times, the large deviation principle for the random variable C"(¢) at any time ¢
with good rate function I3, ,(-) was then proved. The sample path large deviation principle,
which requires further the exponential tightness in the path space, is more involved and we
refer to Agazzi et al. [2, Theorem 1.6]. The relation between the Hamiltonian H and the
rate function in the large deviation principle for a general Markov process was introduced by
Fleming and Sheu [19]; see also [18]. In Sects. 2.3 and 2.4, we summarize key properties for
H(p, x) and its convex conjugate L (5, X) and their relations to the macroscopic RRE, the
HIE for the phase function v, and also the good rate function in the large deviation principle.
The solution X(¢) to RRE (1.6) is shown to be a least action curve with zero action cost
Act(X(-)) = 0; see Lemma 2.5. Indeed, X (¢) is a curve following the Hamiltonian dynamics
with zero momentum p = 0.

Main Results

In Sect. 3, we utilize the dynamic and stationary solutions to HJE (1.17) to study the charac-
terization and decomposition of RRE. We first recast the RRE (1.6) as a bi-characteristic of
HIE

d._ S N =2
Ex =V,H(,X), p=0. (1.21)
This directly gives the characterization of the macroscopic RRE trajectory X (¢), i.e.,
X(t) = argmin; ¥ (x,r), forallz € [0, T]. (1.22)

Second, the stationary solution v** (X) to HJE (1.17) plays the role of a free energy, by
which, we decompose the RRE as a conservative part and a dissipation part
¥=WE — K@VYSE),

1 1 1.23
W (X) ::/ V,HOVY* (X),%)do, K(X) ::/ (1 —O)VIZ,pH(va”(EE),E) d(Q. )
0 0
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Here the conservative part is orthogonal to V%%, i.e. (W (X), Vi** (X)) = 0 and the dissi-
pation part is expressed using Onsager’s nonnegative definite response operator K (x) for X
w.r.t generalized force V** (X); see details in Theorem 3.2. This orthogonal decomposition
yields that any increasing function of the energy landscape ¢ (*%) serves as the Lyapunov
function of RRE; see (3.17). GENERIC formalism and anti-symmetric structures for RRE
with additional mass conservation law are also discussed in Sect. 3.2.

Third, in Sect. 3.3, we use the above conservative—dissipative decomposition for RRE to
derive the thermodynamic relations for general chemical reactions, i.e., we express the total
entropy production rate as the adiabatic and nonadiabated entropy production rate

Tsto‘ = TSna + Tsa >0,
TSpa = ke T(K (X)VY*S (7)), VY** () = 0,
180 =k Y (KL@F Gan|@] Gaone V") (124
j '
+KL(@;(;(t))||¢J+(;(t))eﬁ,~w”)) >0,

where KL(X||X*) = Y, (xi In ;{—; — X + xl*> is the relative entropy; see Proposition 3.7.
Particularly, as t — 400 and X(¢) goes to a non-equilibrium steady state (NESS) X*, remain-
ing a strictly positive entropy production rate is an important feature of a non-equilibrium
chemical reaction [39]
. dT(EY)
TSy — kTS (cbff(iS) - cbf(iS)) log —— " > 0. (1.25)
: J J
J

®; (¥

Fourth, for general non-equilibrium RRE and the corresponding CME (1.5), we also derive
a ¢-divergence energy dissipation law based on the Qy-matrix structure and a Bregman’s
divergence in Proposition 3.8. Particularly, if there exists a positive invariant measure 7,
for mesoscopic CME, taking ¢ (p) = plog %, in the large number limit, the correspond-
ing mesoscopic energy dissipation relation converges to the macroscopic energy dissipation
relation (3.20) in terms of the energy landscape v** (X). We emphasis that the mesoscopic

(%)

¢ (u) is convex, the nonlinear weight m,(x,) in F(p) drastically pick up the complicated
non-convex energy landscape for chemical reactions from 7, (X,) ~ e V@ in the large
number limit. After the concentration of the measure in the large number limit, a non-convex
energy landscape 1/° emerges. Notice there is no such a transition from convex functional to
a nonconvex function under the RRE detailed balance assumption because the correspond-
ing probability flux is only monomial. We point out the above emerged polynomial grouped
probability flux (4.1) and the non-convex energy landscape are only linked to non-equilibrium
in the specific context of chemical reactions. For general equilibrium models in statistical
physics, non-convex energy landscape is common, for instance the Lagenvin dynamics with
non-convex potential and Ising model of ferromagnetism.

In terms of the mesoscopic chemical reaction jumping process, the proper mathematical
definition for detailed balance is there exists a positive invariant measure m, satisfying the
Markov chain detailed balance (4.3), which naturally includes the above grouped probability
fluxed (4.1). In the large number limit V — o0, this Markov chain detailed balance gives
raise to a symmetry for the macroscopic Hamiltonian

energy functional F(p) =} ; ¢ (p (}V)) 7 (X,) is always convex w.r.t. p. However, since

H(p,X) = H(VY*™(X) — p,X), VX, p; (1.26)
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see Proposition 4.1. Taking p = 6, we know 1% (X) is the stationary solutior_l to HIE (1.17).
Applying (1.13) and (1.17), we formally have ¥** (X) = — limy _ log”%. Rigorously,
an upper semicontinuous viscosity solution ¥** to the stationary HJE was constructed from
7 (X,) in [24] in the Barron-Jensen’s sense [9].

The first consequence of this symmetric Hamiltonian (1.26) is the RRE becomes an
Onsager’s type strong gradient flow in terms of **(X). That is to say the conservative
part W (X) vanishes in the RRE decomposition (3.15); see Proposition 4.4.

The second consequence of this symmetric Hamiltonian is the time reversal symmetry in
terms of the Lagrangian upto a null Lagrangian

LG,X) — L(=5,%) =5 - VY (¥), Vix,5. (1.27)

This symmetric relation was first dated back to Morpurgo et al. in [53] for Hamiltonian
dynamics in classical mechanics with a quadratic Hamiltonian. The quadratic form Hamil-
tonian H(p, X) = p - (p — VU) from the WKB expansion of the Langevin dynamics is also
symmetric w.r.t p = LY U, so the classical Freidlin-Wentzell theory [21] shows the most
probable path connecting two steady states x*, x® of U (assumed to be double well with
Morse index 1) is piesewisely given by an ’uphill’ least action curve which starts from x*,
passes through a saddle point X and then matches with a ’"downhill’ least action curve from
%€ to XB. The ’uphill’ least action curve with nonzero action is exactly the time reversal of
the zero-cost least action curve from X° to X*. This symmetric relation (1.27) was systemat-
ically studied in [50], which established the relation between generalized gradient flow and
the large deviation principle. The symmetry in the Hamiltonian (1.26) was also used in [6]
for the macroscopic fluctuation theory; see recent developments in [37] for the fluctuation
symmetry and the associated GENERIC formalism. In Proposition 4.6, with the symmetric
Hamiltonian condition (1.26), (i) the ’uphill’ least action curve connecting a stable steady
state and a saddle point is still the time reversal X®(¢) of the "downhill’ curve X (z) while the
corresponding momentum is reversed with an additional control force Vy*%; (ii) the differ-
ence of Lagrangians between the forward and reversed curve is a null Lagrangian (1.27), so
the difference of the action cost between the path and the time revered path depends only on
the starting/end positions; (iii) the steady solution ¥**(¥) to HJE (1.17) defines the energy
landscape for the chemical reaction and the path affinity is given by the difference between
the values of ¥** at the starting/end positions

Act(X* () — Act (R () = ¥ (37) — ¥ (3p). (1.28)

The globally defined energy landscape y¥*S coincides with the quasipotential [21] upto a
constant if the least action curve stays within a stable basin of attraction of a steady state.

The third consequence is we can use the symmetric Hamiltonian to study a class of
non-equilibrium enzyme reactions. Notice the symmetric Hamiltonian condition brought
by the mathematical definition of Markov chain detailed balance (4.3) is more general than
the constrained chemical version detailed balance condition (1.12). Although the Markov
chain detailed balance is a basic mathematical concept, it includes the grouped probability
flux representing a nonzero steady flux in each reaction channel. The resulting symmetric
Hamiltonian can be used to describe a class of non-equilibrium reactions including enzyme
catalyzed reactions. In Sect. 4.4, a simplified Schlogl catalysis reaction was studied in detail,
where three features for non-equilibrium chemical reactions: multiple steady states, nonzero
steady state fluxes and positive entropy production rates at non-equilibrium steady states
(NESS) are shown.
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The stationary solution ¥r** (X) to HJE serves as the energy landscape of chemical reac-
tions, facilitates the conservative—dissipative decomposition for RRE, and also determines
both the energy barrier and thermodynamics of chemical reactions. For a detailed/complex
balanced RRE, we simply have v** (X) = KL(X||x*); see Lemma 3.6. For general chemical
reactions, we first discuss viscosity solutions to stationary HJE by the dynamic program-
ming method [72, Theorem 2.41]. This is equivalent to an optimal control interpretation in
an undefined time horizon; see Sect. 5.1. By Maupertuis’s principle for an undefined time
horizon (see (4.38)), we regard p as a control variable, then in terms of the Hamiltonian, the
most probable path is solved by a constrained optimal control problem (see (5.1))

T
oG B e = int [ (5 V,HGD — HG.D +0) ar,
P JO

st.X=V,H(p, %), 1€(0,T), J=3i" ir=7.

(1.29)

Here and afterwards, we use notation V,, H as the vector {9, H};—1.n. The critical energy
level c is zero for the Hamiltonian in chemical reactions. Let X* be a steady state of RRE, then
the corresponding critical mafié potential v(y; x*, 0) gives a viscosity solution to the steady
HIJE [34]. However, to obtain a unique viscosity solution given by the energy landscape ¥**
in a chemical reaction, some notation of selection principle in the weak KAM solutions needs
to be imposed [25].

In general, a standard diffusion approximation can be obtained via the Kramers—Moyal
expansion for the CME, which is equivalent to the quadratic approximations near p = 0
for the Hamiltonian; see Sect. 5.2. However, this diffusion approximation only valid for a
transition near the ’downhill’ solution to the RRE. The ’uphill’ transition path starting from
a stable steady state ending at a saddle point is a rare transition in the large deviation regime
and the energy barrier can not be computed by the above diffusion approximation. We refer
to [14] for quantified analysis of the failure of the diffusion approximation via the Kramers—
Moyal expansion (a.k.a ‘system size expansion’ by van Kampen [74]). Based on the strong
gradient formulation (4.17), another drift-diffusion approximation (5.13) is proposed as a
good quadratic approximation near not only the ’downhill’ solution to the macroscopic RRE
but also the "uphill’ least action curve. This diffusion approximation shares the same energy
landscape and same symmetric Hamiltonian structure w.r.t. Vi/** and satisfies a fluctuation—
dissipation relation with an invariant measure 7 = eV,

State of the Art

The WKB expansion is a classical and powerful tool to understand the exponential asymp-
totics that quantifies the fluctuations in many physical problems; see Kubo et al. [38] for
a WKB expansion of a general stochastic process and see Doi—Peliti formalism [13, 55].
WKB analysis also initials physical studies of the large deviation(fluctuation) behaviors for
stochastic models of chemical reactions from a Hamiltonian viewpoint, c.f. [4, 12, 33, 46,
71]. Particularly, in the large number limit of chemical reactions modeled by the CME, Dyk-
man et al. [12] first derived HJE (1.17) with the associated Hamiltonian H and studied the
symmetry of the Hamiltonian in a detailed balanced chemical reaction system. We also refer
to a recent review article [4] using WKB approximations to study various large deviation
behaviors such as population extinction/fixation, genetic switches and biological invasions.

The concept and the exponential asymptotics for the reaction rate in terms of the activation
energy (energy barrier) for transitions between two states in a chemical reaction was pioneered
by Arrhenius 1889 while the celebrated work by Kramers explicitly estimated it for a Langevin
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dynamics. At the mathematical analysis level, the large deviation principle with the associated
Lagrangian/Hamiltonian for general stochastic processes and the transition path (the most
probable path) connecting two stable states were pioneered by Freidlin and Wentzell in late
1960s, c.f. [21]. The central idea of the Freidlin—Wentzell theory is that the steady solution
Y33 (5) to the HIE defines a quasipotential which quantifies the maximum probability or the
energy barrier for a transition, i.e., an exit problem in the basin of attraction. We also refer to
[18-20, 40, 41] for the optimal control and nonlinear semigroup viewpoint, which connect
least action problems with HJEs. For chemical reactions with RRE detailed balance (1.12),
the quasipotential is given by ¥**(X¥) = KL(X||x®) [12], while for general large number
process including non-equilibrium dynamics, [2] proved the large deviation principle for C*
with the associated good rate function. In [24], the large deviation principle at single times
was proved via the convergence from the Varadhan’s nonlinear semigroup to the Lax—Oleinik
representation of the viscosity solution to HJE. Moreover, an upper semicontinuous viscosity
solution in the Barron-Jensen’s sense [9] to the stationary HJE was also obtained in [24] by
using a positive detailed balanced invariant measure to C".

With the RRE detailed/complex balance condition, characterization and uniqueness
of all steady states for the macroscopic RRE was proved in [16, 31]. On the contrary,
thermodynamic relations, dissipation structures and computations for transition paths in non-
equilibrium stochastic dynamics are challenging problems due to coexistent steady states and
nonzero steady fluxes sustained by environment, whose studies were pioneered by Prigogine
[58] from the Brussels School. We refer to [27, 39, 61, 62, 64, 67] and the references therein
for thermodynamics relations, particularly the adiabatic/nonadiabatic decomposition for the
nonzero entropy production rate in non-equilibrium biochemical reactions. In [45], Lazarescu
et al. used a biased Hamiltonian H for chemical reaction based on time-averaged observa-
tions to study the first order phase transitions, particularly for metastable models in an open
system with non-equilibrium steady states. However, it is not clear whether the biased Hamil-
tonian provides the most probable path (the least action path for the original Hamiltonian).
Using a linear response relation with a susceptibility x (o) between the current and the exter-
nal field generating the fluctuation, a comprehensive review by Bertin et al. [7] discussed
the macroscopic fluctuation theory including the time reversal, symmetry of Hamiltonians,
fluctuation theorems at a macroscopic scale for various physical models. The macroscopic
fluctuation theory was first developed by Bertini et al., [6]; see further mathematical analysis
and variational structure including the density-flux pair large deviation principle in [57, 59,
65]. Without the quadratic approximation of the Hamiltonian, the calculations of transition
paths, and the symmetry for fully nonlinear Hamiltonians in non-equilibrium reactions were
not discussed in [6, 7]. Indeed, there were many studies for the failure in computing the
correct energy barrier of transition paths using a simple diffusion approximation from the
Kramers—Moyal expansion of the CME; c.f. Doering et al. [14] for the extinction problem in
a birth-death stochastic population model.

Under the RRE detailed balance assumption, the macroscopic RRE has several gradient
flow structures in terms of free energy KL(X||x®) [49, 54]. Particularly, a De Giorgi type
generalized gradient flow structure brought by the symmetry in the Hamiltonian is closely
related to the good rate function in the large deviation principle; see systematical studies
in [50]. Recently, [48, 49] recovered the macroscopic RRE for chemical reactions via the
evolutionary I"-convergence techniques in [47, 70] in the gradient flow regime. The sym-
metric Hamiltonian was also used in Kraaij et al. [37] to study the fluctuation symmetry.
This symmetry criteria reduces a pre-GENERIC system to a GENERIC formalism [37]. In
general, the energetic decomposition for a dynamics is not unique and has different gradient
flow structures with associated fluctuation estimates; c.f., [60].
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The remaining part of this paper is organized as follows. In Sect. 2, we provide preliminar-
ies for the RRE, WKB expansion and properties for the Hamiltonian and the Lagarangian. In
Sect. 3, we study dynamic solutions, steady solution 1** (X) to the HJE. Using the stationary
solution, we propose a conservative—dissipative decomposition for general non-equilibrium
RRE (see Sect. 3.2) and also give a decomposition for its thermodynamics (see Sect. 3.3).
The associated energy dissipation laws at both mesoscopic and macroscopic level with the
passage from one to another is given in Sect. 3.4. In Sect. 4, we use a symmetric Hamilto-
nian to study a class of non-equilibrium enzyme reactions, which yields (i) an Onsager-type
strong form of gradient flow and (ii) a modified time reversed curve serves as the transition
paths between coexistent steady states. Bistable Schlogl example is discussed in Sect. 4.4.
In Sect. 5, we clarify the existence of the stationary solution to HJE via an optimal control
representation in an undefined time horizon and give a diffusion approximation for transition
path computations that satisfies the fluctuation—dissipation relation and the same symmetric
Hamiltonian. Pedagogical derivations for CME, the generator and the mean field limit RRE
after including ‘no reaction’ boundary condition are given in Appendix.

2 Preliminaries: Macroscopic RRE, WKB Expansion and Large Deviation

As a preparation for our main results, in this section, we review some terminologies for
the large number limiting RRE (1.6) and collect some preliminary lemmas for existence,
uniqueness, characterization of steady states in a detailed/complex balanced RRE system.
The associated Hamiltonian H (p, X) and HJE from the WKB expansion are also revisited.
Moreover, the convex conjugate L(s,x) of H(p, X) gives the rate function in the large
deviation principle for the large number process, which allows us to study the transition path
for a non-equilibrium system in later sections. Most of the results in this section was known
while we provide brief proofs for completeness.

2.1 Terminologies for the Macroscopic RRE and RRE Detailed/Complex Balance
Conditions

Recall the forward and backward fluxes @f satisfying LMA (1.7) and RRE (1.6). Using the
N x M stoichiometric matrix v7 and the reaction rate vector

FE) = (1) (D) _y = (@] () = ® (@) j=1m, @.1)
we represent RRE (1.6) in a matrix form
s TR = R, 22)
dr

where 13()_5) is called the production rate. Denote the range of matrix vT asRan(v7), i.e., the
span of the column vectors {v;} of vT. Then we know the production rate

*() € Ran(wT) c RV, (2.3)

Motivated by this, we define the subspace G = {X € RV; ¥ € Ran(vT)} which is known
as the stoichiometric space. Recall (1.9), i.e., vin = 6 which implies the conservation of
total mass, i.e., % (m - X) = m - vT'F = 0. Therefore the Wegscheider matrix v always has a
nonzero kernel, i.e., dim (Ker(v)) > 1.

We have the following lemma on existence and uniqueness of dynamic solution to (1.6).
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Lemma 2.1 Assume v € RM*N s the Wegscheider matrix satisfying (1.9). Consider RRE
(1.6) with flux CD;*_ satisfying (1.7). We have

(1) The region Ri’ = {¥ € RN; x; > 0} is an invariant region;
(ii) For any initial data Xy > 0, there exists a unique global-in-time bounded solution to
(1.6) satisfying

%i(x) -m=0. 24

The statement (i) can be directly verified by proving %xi > 0 at any x; = 0 using case by
case arguments. The statement (ii) is a consequence of (1.9) and the standard ODE theory.

2.1.1 Detailed Balance and Complex Balance for the Macroscopic RRE

Recall the macroscopic RRE (1.6) and the RRE detailed balance condition (1.12) is equivalent
to

logk} —logk; =7V, -logx* (2.5)

due to LMA (1.7).

Denote the complex space as the collection of distinct reaction vectors C := (Df) i
Jj=L

Then the complex balance condition means for each complex 1 € C, all the reactant contri-
butions in the flux equals all the product contributions in flux. Precisely, a strictly positive
(componentwisely) state X5 > 0 is called complex balanced [31] if

> (o -ora)+ Y (9@ - o;ad) =0, 2.6)
J.vy =i Jvy =i
One can directly verify state X; > 0 satisfying (2.6) is a steady state to RRE (1.6). Indeed, at
)?g recast the RHS of (1.6) as flux difference

D0 (0TG- 07 D) = Y5 (076D - 0T ED) + D07 (0 @D - 07 G).

J J J
Q2.7

The first term in the summation represents that for the reactant (aka substrate) complex ﬁ;r

in the jth-forward reaction, the net flux is d>; (x5 — @j()‘fﬁ). So we can re-classify this
summation w.r.t distinct reactant complex D;’ =1n,n€eC

> vt (@D;()?S) — dﬁ(iﬁ)) =iy (ab;(fg) - q>]+(£g)) . 2.8)
J ieC =i

J
the jth-backward reaction, the net flux is q);r()?g) — QD; (%%). Therefore we can choose to

Similarly, the second term in the summation represents that the reactant complex v in

re-classify this summation w.r.t distinct reactant complex 17/._ =n,n7€eC

hrh (erE —o7@) =20 Y (o7E - o7@). 2.9)

J neC Jvy =i
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Combining the above two ways of rearrangements for the summation in chemical channel j,
(2.7) becomes

>ou (@@ - @ @)

=i X (@ -et@)+ Y (efan - @) | =0,
neC j;ﬁjff:i, iy =i
(2.10)

where we used the complex balance condition (2.6).

2.2 Characterization of RRE Steady State for the Detailed/Complex Balance Case

Now we investigate all the steady states of RRE (1.6), i.e.,
= (#* e RY; R(E®) = > v (@j(}e) — c1>;(5ée)) = 0). .11
J
First, we show uniqueness of positive steady states for the detailed balanced RRE. From
(1.7), we have

3 N o\ Vi @7 (X) DT ()
= oo X Xi _ J j
v -log = log (l_[ <x15> ) log (43?()?) dDj(ES)) . (2.12)

i=1

If X > 0, then from (2.12), we have

e B B B 1) (xe) q)+(x8)
0=log;s.R(xe)ZZ(Q;(xe)_QDj(xeﬁlog(@_f_( G S)). (2.13)
j j J

Under RRE detailed balance condition (1.12), the above equation implies CIDJ+ (x°) = d> (x°)
and thus X° also satisfies RRE detailed balance. Notice (1.7) and (1.12) implies 1dent1ty

I ®; (%)
v; -log == log ot ® ) (2.14)
J

We know log = : € Ker(v). Given the stoichiometric space G and g € Ker(v) g+Gis
called one st01ch10metrlc compatibility class. Then it is easy to verify that if x° and X% are
in the same stoichiometric compatibility class, then X = x°. Indeed, from log % € Ker(v)
and X°¢ — x° € G, we know

¥e

log = - (¥ — &) = 0. 2.15)

which implies x¢ = X5.

This uniqueness of steady states in one stoichiometric compatibility class still holds for
the complex balanced system, with a slight modification of the above proof. We conclude
the following well-known result on the uniqueness of steady state; c.f., [31, Theorem 6A],
[3, Theorem 3.5].
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Lemma 2.2 Assume there exists a strictly positive steady state X; satisfying complex balance
(2.6). Then for any ¢ € Ker(v), there exists a unique steady states X3 in the space {X €
g+ G; X > 0}. Moreover, )_c'i satisfies complex balance condition (2.6), and is characterized

by
(X = (xied > 0. (2.16)

As a consequence, if )?} satisfies RRE detailed balance (1.12), thus it also satisfies (2.6).
So (2.16) still holds and this unique steady state X in the space {X € ¢ + G; ¥ >
0} is RRE detailed balanced. For both the detailed/complex balanced RRE system, x*
constructs a Lyapunov function for (1.6), known as the relative entropy KL(X||x®) =

> (xi In ;“—‘S — X +xis) . Since KL(x||X®) is strictly convex for {¥x € ¢ + G; X > 0},
so one also have local stability of the RRE detailed/complex balanced steady state x°.
To obtain global stability of X3, a necessary condition (see [69]) is that there shall be no
equilibrium on the boundary of Rﬁ for the positive stoichiometric compatibility class, i.e.,

{x € 4 + G; X > 0}. We refer to [5] for more detailed conditions to obtain global stability.

2.2.1 Deficiency Zero Theorem

The complex balance condition is an important property for balance between the product com-
plex and the reactant complex. It also motivates a more important index theorem based only
on the graph structure of the reaction networks. Recall the complex space C = {T)Jj.t }j=1:m and
species X = {X;}i=1.n. A reaction network, denoted as (X, C, R), is a directed graph with
nodes given by the complexes C and directed edges given by reactions R = {v — T);}.
Each connected subgraph (regarded as undirected subgraph) is called a linkage class and
denote the total number of the linkage classes of the reaction graph as £. Denote the total
number of distinct complex as n. and denote the rank of v as s. Then the deficiency of the
reaction network is § := n, — £ — s > 0. In [16], Feinberg proved that a deficiency zero
network, i.e., § = 0 is equivalent condition for that the equilibrium for (1.6) is complex bal-
anced. Therefore, the equilibrium of the RRE (1.6) can be characterized using the deficiency
zero theorem, which relies only on the network structure of (X, C, R). More precisely, we
call the reaction network is weakly reversible if for any path connecting from complex C; to
complex C;, one can always find a path connecting from complex C; to complex C;. Then
the deficiency zero theorem proved by Horn and Feinberg [16, 31] states that if a chemical
reaction network with LMA satisfies (i) § = 0 and (ii) weakly reversibility, then there is a
unique positive steady state in each stoichiometric compatibility class; see also [17, Theorem
7.1.1].

2.3 WKB Expansion and Hamilton-Jacobi Equation

In this section, we use the WKB analysis of the CME for p(X,, t) to study the exponential
asymptotic behavior. We will investigate some good properties of the resulting HJE and the
associated Hamiltonian H (p, X) defined in (1.16). Recall the large number process C¥(¢) in
(1.4), which is also denoted as C; for simplicity. For fixed V, recall QO defined in (1.5). Then
for any continuous test function f(X,), we have

d R - - -
w2 @G =3 O NEIPGED. 2.17)

';V
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Here Q, is the duality of O, see explicit definition in (A.12) after including ‘no reaction’
boundary condition.
Denote

w(E, ) =EY (f(C)), (2.18)
then w(X,, ¢) satisfies the backward equation
dw=Qw, wx,0) = f(x,). (2.19)

We refer to [24] for the well-posedness of the backward equation after including ‘no reaction’
boundary condition.

Assume there exists a smooth enough function u (X, ¢) such that at X = X,, we have WKB
reformulation

w(X,, 1) = V@D, (2.20)
‘We obtain
R 1 = = 1 R 1 R
du(x,, 1) = Ve—v“@‘m Qe v = T H Vi), (i, 0) = 7 log £(5). (2.21)

In summary,

- 1 - 1 z 1 z -
uE 1) = 5 logw(E. 1) = - 10gE™ (f(C) = 1 10gE™ (")) =: (Syuo) (R)
(2.22)

is the so-called Varadhan’s nonlinear semigroup [18, 73] for process C;.
n

For any X € Rf, let Xy = {7 — X as V — +o0. Then the after WKB reformulation at
X, > 0 gives
M -
Vu(¥y,t) _ + /2 Vu(Ev++-) _  Vu(iy)
0.¢ =V Z 7 (%) <e 7) —e )
J=LA+$20
M

VoY 9@ <ev“(’zv_71) - evm”)

. -V
J=1,xv*ﬁ/20

For X, ¢ RY . one can define a zero extension for &Df (X,); see [24]. Using Taylor’s expansion

W.I.t %, we obtain HJE for u

duE, 1) = % (cbj(;c’) (eﬁ.f'v"@’) - 1) + @7 (@) (e—ﬁ-f'v"@’) - 1)) . (23)

j=1

Similarly, starting from the froward equation (1.5), one can obtain the HJE (1.17) for ¥ (X, ).

2.3.1 Properties of Hamiltonian H

Recall the matrix form of the macroscopic RRE

— %= = R®), (2.24)
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where v € RM*N 5 a constant matrix. Recall the mass conservation law of chemical reactions

(1.9) and direct decomposition (1.10), which always satisfies
dim (Ran(vT)> <N. (2.25)

It motivates that for the WKB expansion and the corresponding relations with the rate function
L in the large deviation principle, we will see L make sense in a ‘more accurate’ subspace
G.

Lemma 2.3 Hamiltonian H (p, X) in (1.16) is degenerate in the sense that
H(p,X) = H(p1, %), (2.26)
where p1 € Ran(vT) is the direct decomposition of p such that
p=pi1+p2 pr€Ran@’), pr e Ker(v). (2.27)

Proof From the direct decomposition (1.10), we have (2.27). Thus 0 = V; - p», which implies
(2.26). O

Lemma2.4 H(p, X) defined in (1.16) is strictly convex for p € G.

Proof We compute the Hessian of H in G x RV . Forany & € G,
2 M ) oL oL
JHB+ea ) =Y (5-@) (0F Be 7 + &) @7 = 0

d82 &=l ;
Jj=1

and the equality holds if and only if va = 0. Since @ € G = Ran(v7), there exists a vector
B € RM such that @ = v” 8. Thus the equality above holds if and only if

- >

0=p8"va=pTw!g, (2.28)

which implies& = 0 € G. |

2.4 The Convex Conjugate L (3, x) Gives the Rate Function in Large Deviation
Principle

Let us first introduce the convex conjugate function L and the associated action functional.
Since H defined in (1.16) is convex w.r.t p, we compute the convex conjugate of H via the
Legendre transform. For any § € R", define

L(s,%) := sup ((p,s) — H(p, X)) = (p",5) — H(p", ¥) (2.29)

peRN

where p*(s, X) solves

S=VH(E B =)0 (@F T - a7e ), (2.30)
J
Recall here notation V, H is a vector (9, H),_,.- Thus
L, %) =5 p*(5,X) — H(p*(5, %), X). (23D
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Define the action functional as

T
Act(F()) = / LG@), %(1)) dr. (2.32)
0

Then we have the following lemma.
Lemma 2.5 For L function defined in (2.29), we know
(i) L(5,X)>0and

maxjeGl§ - f— H(F. D). §€ G

+00 §¢G; (2.33)

L, %) = {
moreover, L is strictly convex in G;
(ii) For the action functional Act(X(-)) in (2.32) the least action X(t) satisfies the Euler-
Lagrange equation

(L G500 = w5 (2.34)
” a;x,x _a)?x,x , .
which is equivalent to the Hamiltonian dynamics with H defined in (1.16)
d. . d . .
5= VpH(p, X), P = —ViH(p, x); (2.35)

(iii) X(t) is the solution to RRE (1.6) if and only if Act(%(-)) = 0.

Proof (i) First, from (3.1), H(0, ¥) = 0 thus we know L(5, X) > 0.
Second, from Lemma 2.3, we know for 5§ € RV,
L(5,X) = sup (((p.5) — H(p, X))
pERN

= sup ((p1,5) + (p2.5) — H(p1, X)),
peRN

(2.36)

where p; € G and p, € Ker(v) are direct decomposition of p. Therefore, for s ¢ G,

L(s,X%) > sup ((p1.8) + (p2.5) — H(p1,X)) = sup (p2,5) = +oo.

PreKer(v), p1=0 p2€Ker(v)
2.37)
On the other hand, for § € G,
L(s,X) = sup ({p1,5) — H(p1,X)). (2.38)

p1€G

From the definition of H, we know H has a lower bound and is exponentially coercive.
Indeed,

|pl—+o00 |pl—+00 ;

lim H(p,%) > lim (min(cpj, ®7)e PP ot (F) - q>;(z)) = to0.

(2.39)

Therefore, the sup in (2.37) can be achieved and we conclude (2.33).
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Third, we show that strict convexity of H in G implies strict convexity of L in G. For
any 51, 52 € G, from (2.38) above, there exist pi, p» € G suchthats; = V,H(p1,X), 52 =
V,H(p2, X). Then we have

(1 =52) - (VsLG1, X) = VL (52, X)) = (VpH(p1, %) = VpH(p2, ©)) - (p1 — p2) > 0

(2.40)
due to the strict convexity of H in G.
(ii) Let X(¢) be the least action such that
X(-) = arg min _Act(X(")). (2.41)

X(0)=Xo,X(T)=b

Then X (¢) satisfies the Euler-Lagrange equation (2.34). From (2.30), (2.31), we know given
s, x
oL _ _ ko oy o
aT(S,x) ==V H(p"(s, X), X). (2.42)
X

Thus for p = %, the Hamiltonian dynamics (2.35) holds.

(iii) First, let X (¢) is the solution to RRE (1.6) with initial data Xy and set p(0) = 0. Then

-

p

> d . S
0, Ex = V,H(0, X). (2.43)

This corresponds to a least action X () such that Act(X(-)) = 0.

Second, assume X is a least action such that Act(X(-)) = 0, then L();c(t), X(t)) = 0forall
t € [0, T] and the Hamiltonian dynamics (2.35) holds. It is sufficient to prove the following
two cases.
Case(l), if there exists ¢* such that p(t*) = g for some g € Ker(v), then p(t) = g € Ker(v)
because p = —VyH (G, ¥) = 0. Thus

S

d._ . PO - N _ o
SF=VpHG.®) = V,HO.5) = 3 (@;.r(x) -9 (x)) (2.44)
j=1

implies X (¢) is the solution to RRE (1.6).
Case (ID), if p(r) ¢ Ker(v) forall ¢ € [0, T, then we know V; - p # 0. Then from (2.30) and
Lemma 2.4, we have

X(1) =5 = V,H(p(1), (1) # V,HO,(1)). (2.45)

However, from the strict convexity of L, L(s,x) > 0 fors # V,H (6, X(t)), which contra-
dicts with Act(X(-)) = 0.
Thus we conclude (iii). ]

Asmentioned in the introduction, Lax—Oleinik’s representation (1.20), to which the Varad-
han’s nonlinear semigroup converges, shows that the function L defined in (2.29) actually
gives the good rate function for the large derivation principle for the large number process
CV () at single times. Precisely,

Theorem 2.6 [24] Let C" be the large number process defined in (1.4) with generator Q.
Assume C"(0) = )?5 satisfying 556 — Xo in RN, Then at each time t, the random variable
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C"(t) satisfies the large deviation principle in Rﬁ with the good rate function I, () defined
in (1.20). That is, for any open set O C Rf, it holds

o1 y . -
%/11_1)13{1}2 v log IP’}X{C (t) e O} > _;122 Iz, (%) (2.46)
while for any closed set C C ]RN, it holds

lim sup — log]P’ v{C (t)eC}<— 1nf I;O ((X). (2.47)
V—+o00 14

The sample path large deviation principle in the path space D([0, T]; R_’X ), i.e., the space
of cadlag functions, which is proved by Agazzi et al. [2], is more difficult and significant.

Under some mild assumptions ensuring the existence of solution C*(¢), [2] proved the sample
path large derivation principle for {C"(¢)}, as restated below.

Theorem 2.7 (Theorem 1.6, [2]) Let C" be the large number process defined in (1.4) with
generator Q, defined in (2.17). Assume C"(0) = 553/ satisfying )?3/ — Xo in RN. Then the
sample path C*(t), t € [0, T] satisfies the large deviation principle in D([0, T']; R{X) with
the good rate function

Jy LGE@),3@0)dr if$(0) = Fo, () € AC(0, T]; RV),

Aro. (RO = { +0o0 otherwise. (2.48)

That is, for any open set £ C D([0, T]; ]Rﬁ), it holds
llminf ! log IP; v{C t)eé&l>— mf AxO’T()'éC)), (2.49)

while for any closed set G C D([0, T1; RY ), it holds
lim sup i log]P’ v{C (t)eg} <— mf A;O (X)), (2.50)

V»+oo

where D([0, T]; Rf) is Skorokhod space and AC([0, T1]; RN) is space of absolute contin-
uous curves.

The sample path large deviation principle Theorem 2.7 covers the above single time
result in Theorem 2.6. Indeed, for any fixed open set @ C RY, one takes special open set
EC D0, T; RY) as € = {(X(-) € D([0, T]; RY); %(t) € O}. Then

T
1nf A;O r(X()=inf inf / L(x(s), X(s)) ds = inf 1;0,,@).
yeO \ ¥(HeD((0,T;RY ), X(0)=%o, ¥()=y yeO

Here in the last equality, the least action from 0 to T is the combination of the least action
from O to ¢ and a zero-cost action for ¢ to 7. However, [24] gives an alternative proof for the
simple case in Theorem 2.6 using semigroup approach.

3 The Dynamic and Steady Solution to Hamilton-Jacobi Equation
In this section, we first study a general Hamiltonian H (p, X) and its HJE. (i) As a result of

the law of large numbers p(X,, ) ~ 8z, in the large number limit, the minimizer of the
dynamic solution to the HJE gives the deterministic macroscopic path, which is a solution to
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the corresponding large number limiting ODE; see Proposition 3.1. (ii) The steady solution
Y9 (X) to the HJE gives a Lyapunov function and a conservative—dissipative decomposition
for the macroscopic RRE; see Theorem 3.2. The thermodynamics for detailed/complex bal-
anced RRE and also for general RRE will be discussed in Sect. 3.3 at the mesoscopic scale
and in Sect. 3.4 after the passage from mesoscopic scale to macroscopic scale.

3.1 Kurtz’s Limiting ODE as the Minimizer of HJE Solution y and Its Lyapunov
Function

We further observe the following special properties for H
H(0,%) =0, and thus V,H(0,%)=0. 3.1)

In the following theorem, we will show the solution to the Kurtz limiting ODE (1.6) is the
minimizer of HJE solution . Indeed, without any symmetry assumptions, we will prove a
general theorem that the HJE solution v (x, t) from the WKB expansion can always charac-
terize the ODE path given by the law of large numbers, and the steady solution ¥** (X) yields
a Lyapunov function to RRE (1.6).

Proposition 3.1 Let v (X) be the initial data to HJE (1.17) with a generic Hamiltonian
H(p, x) satisfying (3.1). Assume minz ¥o(xX) = 0 and assume o(X) is smooth, strictly
convex with a linear growth at the far field, i.e.

c1lX] < Yo(X) < c2lX], as |X| — +oo. (3.2)
Then

(i) there exists a unique local-in-time strictly convex classical solution ¥ (X, t), t € [0, T]
to (1.17);

(ii) the global viscosity solution to (1.17) is given by the Lax—Oleinik semigroup (a.k.a the
optimal control formulation)

t
Y(X, 1) = inf / Ly (), y(r))dz 4+ 40o(y(0)), 1 € [0, +00);
y(OeAC(0.0).y)=x Jo
(3.3)

(iii) the solution to ODE %2 = V,,H((), X) with initial data Xy = argmin; Yo (X) is the
minimizer of ¥ (X, t), i.e.,
X*(t) = argmin; ¥ (X,1), forallt €0, T]. (3.4)

Along the ODE solution, Y (X(t), t) = 0. That is to say the trajectory of the correspond-
ing Hamiltonian dynamics with p = 0 gives the mean path in the sense of the weak law
of large numbers

lim E(p(C))) = p(3*(1)). (3.5)
V—+4o00

We remark the rigorous proof for the large deviation principle of process C" shall be done
via the convergence of the WKB reformulation for backward equation, i.e., the Varahdan’s
nonlinear semigroup, to the viscosity solution to the corresponding HJE (1.19) [24]. Then the
concentration of measure gives the mean field limit equation %2 =V,H (6, X). However,
in this proposition, we use the WKB reformulation for the forward equation because the
forward equation is more intuitive for computing the probability. Then the formal conver-
gence from this WKB reformulation for the forward equation to the Lax—Oleinik semigroup
representation of the viscosity solution to (1.17) yields the mean field limit equation.

@ Springer



22 Page22of57 Y. Gao, J.-G. Liu

Proof Step 1 Using the definition of the Hamiltonian in (1.16), we solve the following HIE
by the characteristic method

Y+ H(Vy,X) =0, ¥(x,0) = yo(x). 3.6)

Then constructing the characteristics X (¢), p(t)
X =V,H(p, %), %0)=7xo,
p=-VeH(p.3), p(0)= V(o).

From the assumptions on vy, we know there exists T such that the characteristics X (¢),
X2(t) starting from any initial data (X(0), p1(0)), (X2(0), p2(0)) do not intersect. Thus
upto ¢ € [0, T1, X(¢), p(t) can be uniquely solved from (3.7). For any ¢ € [0, T], we also
know (X, t) is convex. Then along characteristics, with p(t) = V¥ (X(t), 1), we know
z(t) = Y (3 (1), t) satisfies

F=VWED, DX+ 4y GO, 0 =P VoHp,X) — H(p, %), 2(0) = (%)

3.7

(3.8)
Hence we can solve for z(z) = v (X(¢), t). Then we know along the characteristic
d - - By 5
—H&(), p(t)) =x -V H -V,H =0,
o x@),p@®)=x-ViH+p-V, (3.9)

= p(t)-VpH(p,X) = —H(p,X) = —H(po, Xo).

The Lax—Oleinik formula for the global viscosity solution in conclusion (ii) is a direct appli-
cation of the dynamic program principle (semigroup property of (3.3)); see [72, Theorem
2.22].

Step g Particularly, taking X( as the minimizer of Y such that V¥ (Xg) = 0 and thus
p(0) = 0. Then from (3.1), we have

- - d . I
p@) =0, Ew(x(f), 1) =z=—H(po, x0) =0 (3.10)
and we obtain ODE
%2(;) =V, H(0,X(1)). (3.11)
X(t) = argming ¥ (X, 1). (3.12)

Now we prove the trajectory in (3.12) is the mean path in the sense of a weak formulation
of the law of large numbers. Recall the WKB expansion for the law of large number process
cV,ie., p(X,, 1) = e VY Gt for any ¢ > 0. Then for any test function ¢ (X), the expectation
of ¢ satisfies

i @(E)eVIGEen

Vv _ - -
E@(C)) = Y pGpGn = S5y 120 GI3)
Xy Xy
Then by the Laplace principle, we have for any ¢ € [0, T'],
lim IE((p(C,V)) = p(X*(1)), X*(t) = argmin; ¥ (X, 1). (3.14)
V—+4o00
In other words, the process time marginal cV@) converges to x*(r) in law for any ¢. ]
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3.2 Conservative-Dissipative Decomposition for the Macroscopic RRE

In this section, we study finer properties of the macroscopic RRE based on any smooth enough
stationary solutions ¥** (x) to HJE. We will first decompose the RRE as a conservative part
and a dissipative part in Theorem 3.2. Then using another conservation law for the total mass
in special chemical reactions, we explore the GENERIC formalism and bi-anti-symmetric
structures in the decomposition.

Theorem 3.2 Let H(p, X) be a convex Hamiltonian satisfying H (0, X) = 0. Assume "5 (X)
is a steady solution to the corresponding HIE satisfying H(Vy*S(X),X) = 0. Then we
have the following conservative—dissipative decomposition for the macroscopic RRE %2 =

V,H (0, %)
Y=WE) — K@VyH @),
! | (3.15)
W (%) ::/ V,HOVY* (X),%)do, K(F) ::/ (1= )VZ, HOVY* (), %) db.
0 0

(i) W(X) is the conservative part satisfying

(W), V™ (¥)) = 0. (3.16)
Thus we recast conservative part as WE) = AX)VYS(X), where A(X)
= W®V¢|v()16p);(§;b|2 WOW i an anti-symmetric operator.

(ii) —K (X) VS8 (X) is the dissipative part with a nonnegative definite operator K (x). Thus
any increasing function ¢ (-) of ¥**(X) is a Lyapunov function for the ODE with energy
dissipation relation

d Y > > / SS 2 5SS 2 / SS 2 e 5S2 SS 2
Eff)(lﬁ”(x)) =[x, o'W E)VY* X)) = —(¢' @ @K@ VY™ (X), V™ (X)) <0.
(3.17)
Proof Notice v/%* (X) is a steady solution to the HJE satisfying HO,%) = HVYSS(X),X) =

0.
We first recast the right-hand-side of the RRE as

1
V,H(0,%) = —/ 3 ((1 — )V, HOVY*™, %)) db
0
1
=_/ (1= 0)V;, HOVY™ (), X) dOVY* (X) (3.18)
0
1

+/ V,HOVY*, %) d6.
0

This gives the right-hand-side of (3.15) with the definitions K (X), W (X). For the first term
in (3.15), taking inner product with Vi** gives
1
(W), VY™ (X)) = / dHOVY™ (X),X)do = H(VY* (X),X) — H(0,%) =0
0
(3.19)
due to H(0,%) H(Vy*(X),x) = 0. From Lemmas 2.3 and 2.4, we know

(Vf, »H(p,X)p, p) > 0 and strictly positive in G, so K is nonnegative definite operator.
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Second, from ¢’ > 0 and the orthogonality (3.19), we conclude the energy dissipation
(3.17). Particularly,

d oo - e _
ST E = VYT = ~(K@VYT @), VU @) <0. (3.20)
O

Remark 3.3 We remark that in the chemical Langevin approximation, see for instance [23] and
(5.9), the Lagrangian and Hamiltonian are both quadratic and thus the above decomposition
becomes transparent. We point out the choice of the Hamiltonian for the RRE decomposition
is not unique, which leads to different interpretations in energetics and kinetics; c.f., [60].

Remark 3.4 Although we have a family of Lyapunov functions ¢ (55 (X(¢))), we will see
only the stationary solution ¥** is the energy landscape of the chemical reactions later in
Sect. 4. The energy dissipation (3.20) can be regarded as the large number limit of the energy
dissipation law for the mesoscopic master equation in terms of the natural relative entropy
plog g — p + 1; see Proposition 3.8 for a passage from mesoscopic to macroscopic in the
large number limit. In other words, the RRE can be decomposed as an Onsager-type strong
gradient flow in the direction of V/*¢, and a conservative flow in the orthogonal direction of
V%%, both with the same free energy ¥** (x). Thus (3.15) can be regarded as a conservative
dynamics coupling with a dissipation structure. Due to the competition in the chemical
reaction represented by Hamiltonian H between conservative force and dissipation in terms
of a nonconvex energy landscape ¥**(X), this system can exhibit complicated dynamic
patterns such as limit cycles, oscillations, chaotic attractors and multi-stability, etc. The
decomposition (3.15) is a “pre-GENERIC” formalism. The concept “pre-GENERIC” was
proposed by Kraaij et al. [37] which replaces the Hamiltonian part AVE in the original
GENERIC formalism by a general orthogonal term W such that (W, Vy*¥) = 0.

Below, we explore further the GENERIC formalism and two anti-symmetric structures
for RRE by utilizing the additional mass conservation law for chemical reaction, i.e., for any
m € Ker(v), we have $-3(t) - m = 0.

3.2.1 GENERIC Formalism for RRE
Denote the conservative part in the decomposition (3.15) as
1
W(X) :=/ Vo HOVY*™ (X), %) db. (3.21)
0

For any m € Ker(v), we use the conserved mass as the role of the conserved energy
functional in GENERIC formalism
E(X):=m-X. (3.22)
Since V, H(p,X) = 3_; V; (dﬁe‘jﬁﬁ - @;e’ﬁ/'ﬁ> € G, the conservative part W is orthog-
onalto VE = m
(W(X),m) =0, Vm € Ker(v). (3.23)
Therefore, W can be recast as

W@ —m® Wi
I |2

W) = =: A (X)VE, (3.24)
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where A (¥) := w is an anti-symmetric matrix satisfying

A BV (7) = 0. (3.25)

Here we remark that since H is degenerate in Ker(v), without loss of generality, ** (X) can
be chosen within G or we only require (W (x), V% (¥)) = 0.

On the other hand, by Lemma 2.3, we know mT K (X)m = 0. Since K (¥) is nonnegative
definite, we have

K(X)VE =0. (3.26)

In summary, for special Hamiltonian H in chemical reactions, the decomposition (3.15) for
RRE can be recast as GENERIC formalism

X= A1(X)VE(X) — K(X)Vy* (X). (3.27)

3.2.2 Two Anti-symmetric Structures for the Conservative Part

Apart from the full decomposition, we study two anti-symmetric structures of the conservative
part W(Z) = [} V, HOVY* (%), ¥) 6 in (3.15) for RRE.

First, we observe there are two conservation laws for W: one is (3.23) and the other one
is

(W), VY (X)) =0 (3.28)

due to (3.19). Following the same idea for constructing the anti-symmetric operator in (3.24),
given any conservation laws (W, @) = 0, W (X) can always be recast as anti-symmetric matrix
A using

_ (Wea-a®W)a

w -
la|*

= A(¥)a. (3.29)

Particularly, using the formula for H in (1.16),
l o ss l 3 §s
W(E) =1, (cbj/ VYT Ao — & f eTViVY de)
- 0 0
j

-x (07 (77 1) + 05 (7555 1)) W -

(@ (5 = 1)+ 07 (5 —1)) (0 & VU = VI 8T)) o s
; J J Vj - VI/I”|V1//”|2

V. YEAVAVARN

That is to say, for chemical reactions with H in (1.16), the decomposition (3.15) can be recast
as

S

d. . ) L NN NN
*=VpHO.5 = ; v (q>j(x> - @; (x)) = L@V E) — K@) VY ()
(3.31)
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with explicit formulas
M

o + PRvARH o 5wy N l_jj ® ljj
j=1 ’

M 3 sSs AR} 3
o + (5 (v (V; ® Vs — Vy*s @ 1))
Aa@i= 3 (@ (77 1) 0y (T 1)) S e
j=1

(3.32)
It is easy to verify the positive symmetry of K, the anti-symmetry of A and
(K@VYH(X), V™ (X)) 20, (A2(X)VYT(X), Vy*(x)) = 0.

We point out the decomposition (3.31) is analogous to the Landau-Lifshitz equation instead
of the GENERIC formalism (3.27).

In summary, combining (3.24) and (3.30), two conservation laws leads to two anti-
symmetric structures for the conservative part W (X)

W) = A|(X)VEX) = A (X)Vyr' (3). (3.33)

With the above characterization for relations between solutions to HJE (1.17) and RRE tra-
jectory in Proposition 3.1, we summarize the corresponding relations and the decompositions
for RRE in the following Corollary.

Corollary 3.5 For Hamiltonian H(p, X) in (1.16) for a chemical reaction, the minimizer of
the dynamic solution (X, t) gives the unique solution X(t) to the RRE (1.6) with initial
data Xy = ming Y. The steady solution yr**(X) gives a Lyapunov function to RRE (1.6).
The GENERIC formalism for RRE reads as (3.27). Another decomposition for RRE reads as
(3.31) with K and A; defined in (3.32).

As an example, we show that if RRE satisfies the detailed/complex balance condition,
then it is well-known that a closed formula solution for the Lyapunov function is %% (X) =
KL(X||x%); c.f. [69]. In the RRE detailed balanced case, using (2.14), we have dissipation
relation  KLE()|IF) = Tysirlog % = — 3, (q:;(i) - q>]+(,z)) log <zlf+§2> <.
For the complex balance case, we summarize the following equivalent characterization for
complex balance condition (2.6). The proof will be given in Appendix C

Lemma3.6 Assume X° > 0 is a positive steady state to RRE (1.6). Then the following
statements are equivalent:

(i) X* satisfies complex balance condition (2.6);

(ii) The relative entropy ¥** (x) = KL(X||X*) is a steady solution to HJIE (1.17);
$\Vx;

(iii) The product of Poisson distribution wy (X,) = ny Vi) v

_vaS . e .
A e 4 Y is a positive invariant
- . - Lk
measure wy (X,) to the mesoscopic CME (1.5).

3.3 Thermodynamics of Chemical Reaction Systems

Suppose chemical reactions is in a large reservoir that has a constant temperature 7 and a
constant pressure. In this section, we devote to study the thermodynamics for non-equilibrium
chemical reactions. For non-equilibrium chemical reactions, the reaction affinity along j-th
reaction pathway is introduced by Kondepudi and Prigogine [39]
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®F (@)
_A j= kBT log 5
’ O (x)
J
where kg is the Boltzmann constant. For the equilibrium reaction, A ; reduces to the difference
of the Gibbs free energy along j-th reaction pathway (3.38), so this is a natural extension
from equilibrium reactions. Then the total entropy production rate is

. DT (X)
TSu:i=3 (@j(sc’) - cb;(i)) Aj = kyT Z (cbj(;z) — @;(i)) log — (3.34)
J

; ()

J

We will first decompose the total entropy production rate into adiabatic and nonadiabatic
contributions. Then we apply itto equilibrium reactions to check the consistency with classical
thermodynamic relations based on the Gibbs theory. Particularly, as t — +o0, at non-
equilibrium steady states (NESS), the non-equilibrium dynamics still maintain a positive
total entropy production rate.

Recall that the energy landscape ** gives dissipation relation (3.20) in Proposition 3.1.
The nonadiabatic entropy production rate representing the dissipation of the energy landscape
¥*% is defined as

. d - - - >
T'Spa = _kBTEwSS(x(t)) =k T(K(X)VY* (X), VY™ (X)) = 0.

Ast — 400, this nonadiabatic entropy production rate goes to zero. However, as one of the
most important features for non-equilibrium reaction, at NESS, the total entropy production
rate is positive. Therefore, apart from the nonadiabatic entropy production rate 7S, the

remaining part in T S, is usually called the adiabatic entropy production rate
Tsa = Tsmt - Tsna

ST (R(@)) -

=kT Y (®TED) - E@))log [ —L—re” V¥

» ij( FED) - @7 F0)) log <®j@m)e

= kT Y (KL@T G0)II9] G0e ") + KL@; G0)II9f Ge ™)) = 0.
J

(3.35)
where in the last equality, we used H (V5% (X), X) = 0. When t — +00, we have
ot ()
Q +2sy _ d (oS J
TS, — kT XJ: <d>j ) — &7 @ )) log o (3.36)

which is strictly positive for X* being NESS.
In summery, we have

Proposition 3.7 The thermodynamic decomposition for the total entropy production rate
(3.34) of a non-equilibrium chemical reaction is given by

TS,,,, = TSna + TSu > 0»
TSpa = ks T (K (X) VY (X), VY™ (X)) > 0,

TS, = kT Z (KL(cpj(z(zm|q>]f(z(r))e—3.f'w”) (3.37)
j

+KL(®] EO)I@f G)e™ 7)) =0,
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where K (X) is the nonnegative definite operatorin (3.32) and r** (X) is the stationary solution
to HJE (1.17).

Now we review the thermodynamic decomposition for the equilibrium chemical reactions
to see the above discussion is a natural generalization to non-equilibrium reactions. Assume
the chemical potential p; satisfies the thermodynamic relation

wi = ,uiG + kg T log x;, u,iG = u? — kBTlogx?

where //in is areference Gibbs free energy (physically called standard-state Gibbs free energy)
and log x; — log x? together is a dimensionless quantity. From LMA (1.7), we have

T (X) OF(F) ul
lo <d>jj(25) q%r(}) ) = lZvji (logx; —logx;) Zvj, . (3.3%)

In the RRE detailed/complex balanced case, Rao and Esposito [64] introduced a Lyapunov
function called Shear Lyapunov function ¥** () = G.q + ks T KL(X(#)||X*), where G, is
the equilibrium Gibbs free energy with an additional linear combination of conservative
quantities. Particularly, [64] also extend this relation to an open chemical reaction network,
where chemostat species interacting with both internal species and environment are included.
With the special Shear Lyapunov function, the decomposition (3.35) is reduced to

TGE®) v/ log
HED)

TSi=kT Y (cbj(;é(r)) - cb;(f(z))) log (
j

T (X (1)
) e W) (3.39)
— kT XJ: (q)j F(0) — @; (x(t))) log (q);(;s(,)))

d
= TSmt - TSna = TSmt +kBT? KL(x(t)H )7

where the entropy production rate from adiabatic contribution T'S, represents the chemical
work rate performed by the chemostats when interacting with the environment; see [64, Eq.
(84)].

We point out for general non-equilibrium reactions, ¥** (¥) is an asymptotically effective
energy in the large number limit, which is different from the thermodynamic free energy
(Kirkwood potential [36]). On the other hand, we also discuss the passage from the meso-
scopic thermodynamics to the macroscopic thermodynamics in Sect. 3.4 below, where %%
can be regarded as the large number limit of the mesoscopic relative entropy.

3.4 Energy Dissipation Law and Passage from Mesoscopic to Macroscopic Dynamics

For a general non-equilibrium RRE and the corresponding CME, we first derive the ¢-
divergence energy dissipation law based on the Qy-matrix structure and a Bregman’s
divergence. This type of ¢-divergence energy dissipation law was previously derived by
[49] under the RRE detailed balance condition.

Based on this energy dissipation law for general non-equilibrium reactions, we take
o(p) = p log £, then as V — +o00, the corresponding mesoscopic energy dissipation
relation converges to the macroscopic energy dissipation relation in terms of the energy
landscape %% (x). This shows the passage from a mesoscopic convex functional to a macro-
scopic non-convex function for general non-equilibrium chemical reactions. We also remark
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that under the RRE detailed balance condition, [49] rigorously proved the evolutionary I'-
convergence in the generalized gradient flow setting for the passage from mesoscopic to
macroscopic dynamics. However, in the RRE detailed balance, there is no such a transition
from convex functional to a non-convex function; see Remark 3.9.

Proposition 3.8 Assume there exists a positive invariant measure wy(X,) and the limit

YOS (F) 1= limy s oo — 22TV oxists. Then

(1) for any convex function ¢, we have the mesoscopic energy dissipation relation

d X, - . Vo X,
O (f;g ;) 7)) =~ Y QG T (3)Dy (p(ﬁ ) P )) <0,
)_Ev v }v's.;:v'

() m(x,)

(3.40)

where Dg(y, x) == (y — x)? fol(l —0)p"(x +6(y — x))d0 > 0. Particularly, taking

¢ (x) :xlogx—x+ 1>0

p( )
(X,

Py (X,)
=- Z QG %) p()log —="—== <0, (341)
T(y)p(x,)
Xy, yx
where Q is the Qv-matrix in (1.5) for the mesoscopic jumping process Cy;
(ii) Formally, as V — 400, the mesoscopic dissipation law (3.41) converges to the macro-
scopic dissipation law (3.20) in the sense that

1 e p(zl’) S8 7%
v Z"("“) log “=5 = ¥ G,

p(y)m(%,)

———— > (KEHVYP @, VY (39), (3.42)
T (y,)px,)

= Z QG %) p(3,) log

Xv W

where X*(t) = argmin; ¥ (X, t) is the mean path obtained in Proposition 3.1 such that
CV(t) converges in law to X*(t).

T
Proof First, recast the master equation for chemical reaction (1.5) as % = pT Q. Since

s, QG %) = 0and Y5 Q.. %)7(3,) = 0, then for any functions ¢ (x). v (x),
% ;¢ (fj g;) n(3,) = Z 0Gh. 2)p(i)¢’ (f; g;)

- % 06 EmG g (o) (2)

-3 063w 255 (# (fiiii) (581 )

v

Xy, Yy
7T ()}

p(yv

)
- Z 0G.. %) () (
= S Ve p(yv)< ,(p(iv)>_ ,(p(;v)»
%Q(yv,xv)n(yv)<ﬂ@v) ¢ ) @ s

B pom)_ (p@))))
("’(n@) "\xG0)))
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Furthermore, take ¥ (x) := x¢'(x) — ¢(x). Denote y = %ﬁvg and x = fzg"g, then the
dissipation can be rewritten as a Bregman’s divergence

V[ X)) —d' M — [ (x) — v (] = —x)¢ (x) + d(x) — d(y) = —Dg(y, x).
(3.44)

Using the integral form of the reminder in Taylor expansion,

1
Dg(y,x) = (y — x)2/0 (1—-0)¢"(x+6(y—1x))do > 0. (3.45)

This concludes (3.40). Take ¢ (x) = xlogx — x + 1 > 0, the dissipation relation becomes
(3.41).
Second, recall the change of variables in WKB expansion

@, =~ EPE Dy = BT, (3.46)

Then

PG~ N
e Gy V<1/’(XV v Wxﬂ)—w-fowm 6 1)d6.
(3.47)

Using the definition of Q-matrix, the dissipation relation (3.41) reads

Zp(xv,o YEE) — Yy @, 1)

1 D
:_ZZ[¢+(X _*)”(x 70 / V(Wy —¥y) Gy -0 do
Xy j=1

-

S N L -
= @G+ PR+ Y [0 V (v =) G+ 0) do ]

(3.48)

Taking limit V — +o0, from Proposition 3.1, cV converges in law to X*(f) =
argmin v/ (X, 1). Using the fact that ¥ (x*(¢), 1) = 0, Vi (X*(¢), t) = 0, the left-hand-side of
(3.48) satisfies
L3 pE)I0g 283 = S0 pG ) (WP (R — Yv . 1) = Y EED) — Y EE0). 1)
= Y (X4 (1)). (3.49)

Similarly, the right-hand-side of (3.48) satisfies

1 .
-y 5 b5~ i~ Sy | vt v G —othe
= (3.50)

M
- Z ST O (VWE @, 0 = TYP @) = 30 T E O - vy E ),
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thus we arrive at

1 Vo P (Xy)
E—— Vs Ay v 1 VRN
% Zy QG- )P log “=mrres
v (3.51)
— Z(fb}r()?*(l)) - fD;()?*(l))) Vi - VSR () = —(K@) VY (X* (1), VY™ (X% (1)).
j=1

Notice the uniqueness of weak convergence. Combining (3.41), (3.49) and (3.51), we con-
clude %W” (X* (1)) = —(K@X)VY*S (X*(1)), VY (X*(1))), which is exactly the Lyapunov
estimate (3.20) for RRE in Theorem 3.2. m]

Remark 3.9 At the mesoscopic level, the energy functional F(p) = Y ; ¢ (” (’EV)) m(X,) is

7 (Xy)

also convex w.r.t. p. However, since ¢ (u) is convex, the nonlinear weight m,(x,) in F(p)
drastically pick up the complicated non-convex energy landscape for chemical reactions
from m,(X,) ~ e~ V¥ ® in the large number limit. Therefore, it is natural that after the
concentration of the measure in the large number limit, a non-convex energy landscape
emerges. Notice also there is no such a transition from convex functional to a nonconvex
function under the RRE detailed balance assumption because the corresponding probability
flux is only monomial. This grouped probability flux including polynomials, which leads to
non-convex energy landscape, are only linked to nonequilibrium in the specific context of
chemical reactions. For general equilibrium models in statistical physics, non convex energy
landscape is common, for instance the Lagenvin dynamics with non-convex potential and
Ising model of ferromagnetism.

4 Symmetric Hamiltonian: Strong Gradient Flow, Reversed Least Action
Curve, Non-equilibrium Enzyme Reactions

In this section, we explore the symmetry in the mesoscopic CME and its macroscopic con-
sequences. In Sect. 4.1, we first clarify that the Markov chain detailed balance implies a
symmetric Hamiltonian; see (1.26). A proper mathematical Markov chain detailed balance
condition for CME is a weaker condition than the more constrained chemical version of
detailed balance, and thus includes a class of non-equilibrium enzyme reactions with three
distinguished features: multiple steady states, nonzero steady state fluxes and positive entropy
production rates at non-equilibrium steady states [39].

Then we study in detail two consequences of this symmetry. (I) We show the conservative
part W (X) vanishes in the conservative—dissipation decomposition for RRE (3.15); see Sect.
4.2. (IT) We prove the uphill’ least action path is a modified time reversed curve corresponding
to the RRE, i.e., corresponding to a zero action ’downhill’ path, and the associated path
affinity is given by the difference of 1/**; see Proposition 4.6. We will call ¥/*¢ as the energy
landscape since it is a Lyapunov function of RRE and will eventually give the energy barrier
of a transition path. We also provide a mesoscopic interpretation of path affinity; see Sect.
4.3.

4.1 Markov Chain Detailed Balance Implies a Symmetric Hamiltonian

We first observe the Markov chain detailed balance condition (4.3) for the mesoscopic CME
is different from the more constraint RRE detailed balance (1.12). The RRE detailed balance
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is a very strong symmetric condition that implies the Markov chain detailed balance condition
(4.3). But the latter one is a proper mathematical definition of detailed balance for a Markov
process, which leads to a symmetric Hamiltonian in a reaction system.

Observe the jumping process with generator Qy only distinct the same reaction vector
E: and then the summation in j shall be rearranged in terms of all j such that v; = j:g .
Therefore, define the probability flux for the same reaction vector 5: as

f (X) = Z T (¥) + Z 7 (¥), O (¥):= Zq®;(5€)+ chbjf()?).

J: U/—S J: U/—_ j:‘jjzs j5‘jj=_§
4.1
With the grouped probability flux, CME (1.5) can be recast as
—p(xv, Hn=v Z F (%, — é)p(zv - é, 1 — 0 F)pE.. 1)
. § Vv Vv §
e - . 4.2)
S T PR
Vo) (% G+ PE+ 50 = S G )
Exv+% >0

where the égt has the same definition as Csz in (4.1) but replacing @jt by é;t. For any X,

and g? , the proper mathematical definition for the Markov chain detailed balance for CME
means that there exists a positive invariant measure 7 (X,) to CME (1.5) such that the total

forward probability steady flux from ¥, to X, + % > 0 equals the total backward one

- -

. £ . £ L . -
®; (xv+v)n(xv+v):@Q(xv)n(xv), VE. (4.3)

On the other hand, a commonly used detailed balance condition in biochemistry is the
more constrained chemical version of detailed balance for each reaction channel, c.f., [77,
Ch7, Lemma 3.1], [1, Theorem 4.5], [61, (7.30)],

-

(X, + 2)n(;‘c’ + ﬁ) =dTE)n(X), Vj 4.4)
j v V v V - j A v/ .]' .

This is also known as Whittle’s Markov chain detailed balance [35]. It is well known that the
mesoscopic Whittle’s Markov chain detailed balance (4.4) is equivalent to the macroscopic
RRE detailed balance (1.12). Indeed, Whittle use the product of Poisson distributions with
intensity VX® to construct a detailed balanced invariant measure wy (X,) satisfying (4.4).
While from (4.4), it is nontrivial to obtain a detailed balance steady state X*; see [77, Ch7,
Lemma 3.1].

The proposition below shows that Markov chain detailed balance condition (4.3) gives
raise a symmetry in the Hamiltonian H (p, X) (see (1.26))

H(p,X) = H(VY*(X) — p,X), VX,p. (4.5)
Taking p = 0, we see ¥* is a steady solution to HJE (1.17).

Proposition 4.1 Assume there exists a positive invariant measure wy (X,) satisfying the
Markov chain detailed balance condition (4.3) for mesoscopic effective stochastic process.

log 7y (%))
4

Assume the macroscopic energy landscape ¥** (X) := limy _, 4 o0 — exists, then the
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Hamiltonian H(p, X) for macroscopic RRE satisfies the symmetry (1.26) w.r.t. % (X), or
equivalently

VDo) = o (@) (4.6)

Proof Let the equilibrium my (X,) to mesoscopic effective stochastic process be my (X,) =
e~ V¥V (%) Then the Markov chain detailed balance condition (4.3) implies

VO (i) = b G+ o). @.7)
2 & |4
Ty (xv + V)
Since as V — 400, X, — ¥ and ¥}/ (¥,) — ¥**(X), then

V@) ERvepGeaesa  EVena) (4.8)
v (F o+ 5

Then taking limit in (4.7), we obtain (4.6). Using the notation for probability flux CDEi()_c') in
(4.1), the Hamiltonian becomes

H(p, %) = Z (cp;(z)e?!’ —oF (¥ + cpg(z)e—é'ﬁ - cpg(})) ) (4.9)
3
Since p in (1.26) is arbitrary, we rearrange and take out common factor ¢€'7_ Then the even
symmetry of H in (4.13) is equivalent to for any p

H(Vy* (X) — p, X) — H(p, X)
=Y (PF@ETV D ET 1 o @) EV I DET — 0f R)eF T — of (@)e T
: 4.10)
=Y (SE@EVITD — g (@) (75 — e EVITDET),
:

This means the coefficients of exponential function ¢&'7 for each distinct £ must be same,
hence (4.6) is equivalent to (1.26). ]

We remark the existence of ¥** (x) constructed from a positive invariant measure 7y (x,)
satisfying (4.3) was proved in [24] in the sense of an upper semicontinuous (USC) viscosity
solution to stationary HJE following Barron—Jensen’s definition [9] for USC viscosity solu-
tion. However, the uniqueness and selection principle for those USC viscosity solution is still
open.

Corollary 4.2 Let H be the Hamiltonian for a chemical reaction defined in (1.16) and x* be
any steady states for RRE (1 .@. Then a necessary condition for the symmetry of H (1.26) is
that for each reaction vector & in the chemical reaction

<1>;(£S) = o (X). 4.11)

Proof 1f x* is a steady state for RRE (1.6), we know vV%* (¥%) = 0. Otherwise, take Xp = x*
as initial data, from the estimate (3.20),

dyrss (X (¢ = . ,
0= W = —(Vy* (X)), K(X)Vy*™) <0, (4.12)
due to H is strictly convex#in G (see Lemma 2.4). This contradiction shows V%5 (x®) e
Ker(v) thus vVy** (x*) = 0. Therefore, evaluating (4.6) at x° yields (4.11). O
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Remark 4.3 As a slight generalization, an even-symmetry of the Hamiltonian w.r.t % is
H(p,X) = H(G(X) - p,%), VX, p (4.13)
for some function g (x). This is equivalent to
L(5,X) — L(—5,%) =5 - g(X). (4.14)

A Hamiltonian which is quadratic in terms of the momentum p is a special cases of (1.26).
For an irreversible drift-diffusion process, dx = —gdt + +/2edB, the corresponding
Hamiltonian H(p,X) = p - (p — q) satisfies even-symmetry (4.13). Another example in
electromagnetism is the even-symmetry for momentum p in Hamiltonian w.r.t the magnetic
vector potential [53].

In the following subsections, we study two consequences for a symmetric Hamiltonian.

(I) Under symmetric assumption (1.26), we provide an Onsager’s strong form of gradient
flow structure in terms of the energy landscape ¥** in Sect. 4.2. That is to say, the conservative
part W (X) vanish in the previous conservative—dissipation decomposition for RRE (3.15).

(II) The symmetric Hamiltonian (1.26) is equivalent to the time reversal symmetry in the
Lagrangian L upto a null Lagrangian (see (1.27))

L(s,X) — L(—5,%) =5 - Vy* (¥), Vx,5. (4.15)

Here 5 - Vi/** (X) is a null Lagrangian, whose Euler-Lagrange equation vanishes. Denote the

timereversed curve of X (1) as X* (r) = X (T —1) withx*(T') = ¥§ = x®and x*(0) = X = x*.
> ~R . . . .

Then take s = x (¢) in (4.15) and integrate w.r.t time ¢ from O to 7 leads to the action cost

identity

Act(X*()) — Act (R () = ¥ (i) — ¥ (30); (4.16)

see Proposition 4.6. We point out the time reversed least action path is an application of
the Freidlin—Wentzell theory [21] for a general exit problem to the chemical reactions while
it also gives the most probable path connecting two steady states X*, x®. As a well-known
application of due to symmetric Hamiltonian, for a Langevin dynamics with a potential
form drift —V U, the Freidlin—Wentzell theory [21] shows the "uphill’ least action curve with
nonzero action is exactly the time reversal of the ‘downhill’ least action curve. The associated
Hamiltonian for this Langevin dynamics is H(p, X) = p - (p — VU), which is symmetric
H(p,X)=H(NVU - p,X), Vx,p.

The idea of using this kind of symmetric Hamiltonian to find the time reversed least
action curve for some classical mechanics was first discovered by Morpurgo et al. [53]. In the
RRE detailed balanced case, the symmetric property w.r.t %V KL(X, X*) of the Hamiltonian
was first studied in [12], Dykman et al. With a symmetric Hamiltonian, the corresponding
generalized gradient flow was first studied in Mielke et al. [50], where the residual of the
gradient flow was connected with the rate function in the large deviation principle. The
symmetric Hamiltonian was also used in Bertin [6] to study the fluctuation symmetry; see also
a comprehensive review [7] on the macroscopic fluctuation theory and recent development
in [37, 59, 65].

4.2 Onsager’s Strong Form of Gradient Flow in Terms of Energy Landscape y**

In this section, under the symmetric assumption (1.26) for Hamiltonian, we derive a strong
form of gradient flow formulation, where the steady solution v/** to the HJE serves as a free
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energy. This gradient flow immediately gives vanishing of the conservative part W (x) = 0
in RRE decomposition (3.15).

Proposition 4.4 Under the symmetric assumption (1.26), the RRE (1.6) becomes a strong
gradient flow in terms of Y% (X)

1
X = —K@F) VY @), K()?):/ ;VipH(GVW”()?))dG. 4.17)
0

Farticularly, for chemical reaction with RRE detailed balance (1.12), (4.17) reduces to
] M
¥ = —K@VKLE()., K@ =) A (q>;r(2), q>jf(£)) (G, ®7,), (418
j=1

where A(x,y) := is the logarithmic mean.

logx log y

Proof Recall the decomposition for RRE in (3.15). When H (p, X) satisfies the symmetric
condition (1.26), we have

Vo, H(VY* (X) — p,X) = =V,H(p,X), Vp. (4.19)
Taking p = OVy**, then

VpH((1—0)Vy* (X),X) = =V,H(OVY, X). (4.20)
Then integrating w.r.t 6 implies

1
/ V,H(OVY* (%), %) do =0
0

and thus the RRE is simply a strong gradient flow (4.17). Furthermore, recall symmetric
nonnegative operator K (X) = fol(l — Q)Vl%pH(QVl//” (X)) d4. From (4.19), we have the
symmetry

1 1
/ (11— G)VipH(QW//”(E))dG = / GVIZWH(OVV/”(EE))dG.
0 0
Thus
1 1
K (%) :/ (1 —G)VZPH(QVWS()?))dQ :/ %Vng(QVI,//”(J?)) do. 4.21)
0 0

Particularly, let X* be a steady solution to (1.6) satisfying RRE detailed balance condition
(1.12). Then we know ¥** (X) = KL(X||X*) and v; - log &% = log

Thus the K-matrix

<I>+< D)
in (4.21) reduces to
M (d)f()'c')—dff(i)) B M
- J J R N,
K(X) = Z 17] V() = Z A (CD;r(x), qu (x)) (l)j X l)j) .(4.22)

j=1 j=1

O
OT(HE) DT (%)
<I>j(x“) ﬂﬁ)) (”/ ® ”/)
which exactly recovers the well-known strong gradient flow represented by the logarithmic
mean A(x, y) = [30] ([49, Theorem 2.2]) for RRE detailed balance case.

The above formula (4.18) can also be written as Zﬁwzl d; (xXHA

logx log y
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Remark 4.5 To fit into more general biochemical reactions such as gene switch [66], we give
a slightly more general symmetric condition for H so that the strong gradient flow structure
still holds. Assume there exists a(¥) > 0 such that

H(p,X) = H(VY*™ (¥) — a(X)p, X) (4.23)
and H still satisfies H(0, ¥) = H(VyS (%), ¥) = 0. Then we have
%z = V,H(@O, %) = @)V, H(VY™ G0)). 3(1)
= —a@® (va(é, 1) + 2K @) VySS (2)) , (4.24)
which yields a gradient flow structure
%; =V,H(0,%) = lf(x() S KOV @, (4.25)

4.3 Reversed Least Action Curve and Path Affinity Described by Energy
Landscape y**

In order to study the transition path between two states X* and x®, we now characterize the
time reversed solution to RRE (1.6). Let X (¢) be the ’downhill’ solution to RRE (1.6) with
%(0) = x© and X(T) = X* for some finite time T. Notice this requires x*, X are not steady
states to RRE (1.6). However, X*, X can be in a small neighborhood of steady states and
then taking time goes to infinity gives the transition path between two stable states passing
through a saddle point. Then by Proposition 2.5, we know X (¢) is a least action solution with
action cost Act(X®(-)) = 0 in (2.32). We define the time reversed curve for X (¢), p(t) by

Pry=X(T -1, pRt)=p(T -1, 0<t<T. (4.26)

Then we know xR satisfies

M
=30 (07EY - 0T (Y, B =FT) =3 FH =50 = @27
j=1 '
The following Proposition 4.6 states that the time reversed solution X® with a modified
reversed momentum

PO = VYRR @) — pr (@) (4.28)

is a "uphill’ least action solution from X = x* to X} = X but with a non-zero action
Act(XR(")).

Proposition 4.6 Given a Hamiltonian H (P, X) satisfying (1.26), suppose L(5s, X) is its convex

conjugate. Let X(t), p(t) be a least action solution for the action functional Act(X(-)) =

fOT L(X, %) dt starting from ¥(0) = X€ and ending at X(T) = X*. Then for the time reversed

solution XX(t), p®(t) defined in (4.26), we know

(i) the modified time reversed solution XX(t), p"*(t) = Vy*S(x*@1)) — pR(t) is a least
action curve starting from X§ = X(T) = X", ending at X§ = X(0) = X and satisfies the
Hamiltonian dynamics

d_ d
—xf = V,H(p"™ 3*), —p"™ = -V, H(p"*, x* 4.29
dtx (p ), drp (p ); (4.29)
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(ii) the corresponding action cost for the least action curve x*(t) is given by
Act(G*() = Act (X () + ¥*° (X7) — ¥ (Xp). (4.30)

Proof First, recall the definition of H in (1.16) which satisfies (1.26). Then regarding p, X
as independent variables in H(Vy*$(X) — p, X) = H(p, X), taking derivatives, we directly
have following identities

VpH(p,X) = —V,H(VY* &) — p, %), 4.31)
ViH(p,X) = Ve H(VYS (3) = p, 3% + VS DV, H(VYY E) — p, %), (4.32)

Second, from (4.31), we have

d 2R =R 2R -MR 2R
= O ==V HP (1), x°(1) =V, H(p™ (1), x°(1)). (4.33)

Third, by the definition of modified reversed momentum p™® and (4.32), we have

%ﬁMR(:) = _%5%) +VYSEROR 0 = p|
HV2YSER )V, H (P (), 7 (1)
= =V H(PR(), ¥*(1) + V2 GRO)V, H (Y™ (1), ¥*(1))
= —VxH(ﬁMR(t),fc’R(t)), (4.34)

Fourth, combining (4.33) and (4.34), we know (xR(z), pM?(¢)) solves a Hamiltonian
dynamics. Notice for any Hamiltonian trajectory (X(t), p(t)), the Lagrangian can be
expressed as

LE@), (1) = p(r) - x(1) — H(p(1), (1)) (4.35)

From (1.26), one can directly compute the action cost along X®

T T
ActGR()) = f LGE (), R0 di = / (ﬁMRa)-i“(r)—H(ﬁMR(z),iR(r))) dr
0 0 (4.36)

T
= f (va”@l‘) : %f%) = PR - VpH(PM, XR) — H(p™R (1), f‘*(r») dr.
0

where we used (4.28). Then by (4.31), we obtain

T d
Act(x%(+) =f0 (W”(ER) . E)?R(t) + pR(t) - VyH(p", X) — H(ﬁ“(t),i"(t))) dr

T T
= / LG(T —1),%(T — 1)) dt + / i1//”(;?“@)) dr (4.37)
0 0 dr
= Act(X(-)) + ¥* (7)) — ¥** (Xp),
which concludes (4.30). ]

The proof for the minimum cost only relies on the observation for null Lagrange L(%, %) —
L(—)_'c’ , X) in (1.27). The statement (ii) for the reversed action cost can be understood as a path
affinity describing in which direction the chemical reaction (or a general nonlinear dynamics)
proceed. Precisely, this affinity is given by Act(X*(-)) — Act (X (1)) = ¥** (x5) — ¢** (X5). In
the case of p® = 6, the ’downhill’ path corresponds to the solution to RRE (1.6) with action
cost Act(x(-)) = 0. In this case, the reversed action cost is

Act(R*() =y () — Y () = ¥ ES) — YR, (4.38)
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Usually, the steady solution ¥*% (X) to HJE is known as the quasipotential V (X ; X*) upto
a constant for the exit problem in the Freidlin—-Wentzell theory [21] in the sense that for x©
in the basin of attraction

T
Y ES) — P EY) = VES I = inf / LGN (), (1)) dr.
0

T>0, ¥R(0)=xA, ¥R(T)=xC

(4.39)

Below we explain why the modified least action path with associated action cost in (4.38)
for a given fixed time T coincides with the quasipotential ¥** (X) in (4.39), where the time T
is also a variable to minimize. On the one hand, the assumption in Proposition 4.6 that there
exists a forward least action curve from x(0) = X€ to X(T) = x* already gives the curve
trajectory with a fixed reaching time 7'. On the other hand, as proved above, the symmetric
property ensures that the modified time reversal yields exactly the "uphill” least action curve
with the same trajectory and the same reaching time 7', but only along a reversed time order.
That is to say, the associated action cost in (4.38) with the reaching time 7" also implies the
optimal time in (4.39) is exactly the reaching time 7" in the ’downhill’ solution to the RRE.
The minimization problem (4.39) is also called Maupertuis’s principle of least action in an
undefined time horizon and we will formulate it as an optimal control problem in a undefined
(infinite) time horizon in Sect. 5 without the detailed balance.

The quasipotential is a generalized potential function to quantify the energy barrier for the
transitions starting from one stable state to another one. The concept of energy barrier (a.k.a
activation energy) was initialed by Arrhenius in 1889 who related the transition rate /C to the

free energy difference via Arrhenius’s law IC o< e~ * with a noise parameter ¢ indicating the
thermal energy. Using a Langevin dynamics starting from X in a basin of attraction, Kramers
estimated the mean first passage time 7(X) = E*(z¢), i.e., the expectation of the stopping
time defined as the first hitting time on the boundary of the basin of attraction, which gives an

. . _3E . .
explicit formula for transition rate I = % o e~ ¢ . Atarigorously mathematical level, the
large deviation theory for general stochastic processes gives the estimate for the reaction rate

by computing the probability of the exit problem from the basin of attraction via the good rate
. _ infgep Act(X(-) . . X L.
functional P{CY e T} ~ e < ; see comprehensive studies in the Freidlin—Wentzell

theory [21] and precise statement in [2, Theorem 1.6] for chemical reactions. Therefore, the
least action cost computed in (4.38) gives the energy barrier for the transition path problem
in chemical reactions and this is why we call /** the energy landscape for RRE (1.6).

In Proposition 4.6, the assumption that there exists a forward least action curve from
X¥(0) = X€ to X(T) = X* already limits the curve within the stable basin of ¥* and not
passing beyond the separatrix (boundary of the basin). Within the basin of attraction of stable
state X*, the globally defined energy landscape ¥** coincides with the quasipotential upto
a constant. On the other hand, the transition path connecting x* to x® and passing through
some saddle point x€ is one of the most important scientific questions. In this case, the most
probable path is piecewisely defined by finding the least action curve from X* to X and then
from X€ to x®; see Sect. 5.1. The energy barrier for the rare transition shall be computed
piecewisely, for instance, the energy barrier for transition X* to X® is given by the “uphill’
action cost ¥** (X€) — ¥ (xX*) plus zero action cost for the ’downhill’ curve. In practice,
given the energy landscape y*%, there are many methods such as string method [75] to find
the saddle point x€.
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4.3.1 Mesoscopic Interpretation of Path Affinity

Denote (2, F, P) as a probobility space. For the large number process CV (), define a new
random variable on the Skorokhod space D ([0, T']; Rﬁ ) through the froward trajactory ¥V (-)
as

dpY
Z, =log — 0@V () (4.40)
dPr7 o
where )?X (1) = XV(T —1) = (RoXxV)(r) is the time reversed trajectory and R is the

reversed operator. Here IP’[‘(/)’ 7118 the probability measure on path space D([0, T']; R’ ) defined
via pushforward of P by ¥V (), i.e., XV (-)4P and with the reversed operator R, IP’[VT 0] is the
probability measure on path space D([T, 0]; ]RN ) defined via pushforward (R o %V)4P. The

dpY N .
ratio #(xv(-)) is the Radon-Nikodym derivative. This Z, is known as the fluctuating
17,01
entropy production rate of any forward trajectory x ¥ (-), with respect to its reversed trajectory.
Z, was also historically introduced by Onsager as a dissipation function [15, 78].

For simplicity in presentation, we assume there is probability density (with the same
notations as the distribution) for dIP’[O T then dIP’[‘f),T] @Yy = IP’[‘S’T] (xV)dx and similarly
we have dIP’[T’O] xY) = P[O,T](R o xV) dx. Fix starting point Xo = x® and ending point
X7 = x*. We define asubset I' c D([0, T]; Rﬁ) as all trajectories X (-) starting from X and

ending at X7. Then by the large deviation principle in [2, Theorem 1.6] (Theorem 2.6 above),
we have

T .
lim logIP’lO nE(er) = min / L(x(1), (1)) dt = Act(¥*(-)),
V> too  E()ernAC(o.T: rY) Jo

(4.41)

where min is achieved at an interior point X*(-), i.e., the least action curve among I" satisfying
Euler—Lagrange equation (2.34). On the other hand, for IP’[VT o) defined on reversed trajectory
above, we have

Plrof8" e T}y =Pl (X5 € T} =Py X" e ¥}, (4.42)

where 'R ¢ D([T, 0]; R" %) is the set of any trajectories X(+) starting from X7 and ending at
Xo. Then we have

lim l1ogIP>V &) el = lim l1og]P>" &) erk
Votoo V [7.0] Votoo V 0.7]

T
—— min /L(?c(t),f(z))dz
F(erknac Jo
. (4.43)
—— min /L(}R(t),)‘é“(r))dr
0

F()elnAC

T
=— _ min / L(—=X(t), X)) dr = Act(X}),
f(yernac Jo

where X} (+) is the least action curve among 'R satisfying Euler—Lagrange equation (2.34).
Under symmetric assumption (4.13) for H, Proposition 4.6 tells us X7 is exactly the time
reversal of X*, i.e., X3 (r) = X*(T — 1). Thus plugging the least action curve x* into (4.41)
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and (4.43) and taking difference, we use the relation (1.27) to derive

: 1 V.o =V : 1 A4
lim v log Plo,”(x ()yel)— VETM 7 logIP’[TyOJ(x (yelD)

V—+o00

T
=/0 (L(—?c*(r),i*(t)) — L(?c*(t),;*(t))) dr (4.44)

r 2 %k ig = - -
= —/0 X VYR dr =yt (o) — v ().

Therefore, the symmetric Hamiltonian implies that in the large number limit, the fluctuating
entropy production rate Z, defined in (4.40) only depends on the given initial X, end states
X and its value is given by the path affinity Act(XR(:)) — Act(X(-)) = ¥ (Xo) — ¥** (X7).

As a special example, when RRE (1.6) is detailed balanced, H satisfies the symmetry
(1.26) with ¥*% (X) = KL(xX||X®). Then the modified reversed momentum pMR(¢) is pMR (1) =

=R - . .. .
log XTS’) — pR(#). The corresponding minimum action can be calculated as

T
0
= Act(3(-)) + KL(xR[|¥%) — KL(X§||3%). 4.45)

For a special case that X (¢) being the solution to RRE (1.6) with X(0) = X® and X(T) = x*
for some finite time 7', then X (¢) is a least action solution with zero action cost (the ’"downhill’
path). The time reversed curve X®(z) = X (T —t) is the most probable path (the "uphill’ path)
from X* to X® with action cost KL(X®||¥®) — KL(x*||X%). As time evolves, the solution to
the RRE and the reversed one stay at the same level set of the Hamiltonian H = 0.

4.4 Non-equilibrium Example: A Bistable Schlogl Catalysis Model

In this section, we show the symmetric Hamiltonian, brought by the Markov chain detailed
balance, does include a class of non-equilibrium enzyme reactions due to the flux grouping
property (4.1). This type of non-equilibrium enzyme reactions plays importantroles in aliving
cell, for instance in the phosphorylation-dephosphorylation with 2-autocatalysis described
in Appendix D, the enzyme plays as an intermediate species but dramatically lower the
energy barrier. The flux grouping within a same reaction vector leads to multiple steady
states and nonzero steady state fluxes that maintains a ecosystem. We will illustrate the idea
of constructing the optimally controlled time reserved solution in a well-known bistable
reaction in an open system. Consider Schlogl catalysis model [68] with environment @,
chemostats A, B and internal specie X

K ks
A+2X = 3X, B = X, A=¢=08 (4.46)
ky ky

where kfr, ki, k;r , k5 > 0 are reaction rates. X plays a role of enzyme in biological system
and is usually called an intermediate or an autocatalyst [8, 74]. Denote the concentration of
X as x and the concentration of A, B as a, b. Here a, b are assumed to be constants that are
sustained by the environment. Below, we will see there is a bifurcation ratio of a, b to classity
the reaction rate system as a non-equilibrium reaction system, except for a special value of
2. We will use the Schlogl model to describe non-equilibrium steady state behaviors, which
have three typical features: (i) multiple steady states; (ii) nonzero steady state fluxes; (iii)
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positive entropy production rates at non-equilibrium steady states. We first observe the flux
grouping degeneracy in the same reaction vector, which usually exists in enzyme reactions
such as the Michaelis—Menten kinetics; see Appendix D for a realistic phosphorylation-
dephosphorylation model. This is the main reason leading to coexistence of multiple steady
states. The RRE for the Schlogl model indeed can be formulated as a Ginzburg—Landau
model with double well potential. Based on Proposition 4.6, we study the transition path
between two stable steady states passing through an unstable state with an associated energy
barrier. We will see the energy barrier is not computed from the Ginzburg—Landau double
well potential but rather the energy landscape given by the HJE steady solution. That is to
say, a simple diffusion approximation can not be used to compute transition path problem in
the large deviation regime; c.f. [4].
In detail, given a, b > 0, the forward/backward fluxes of these two reactions are

OF () =kfax?, @7 (x) =k;xd, DT () =kSb, Dy (x) =kyx.  (4.47)
Since vi; = 1, vp1 = 1 for internal species X, we have the macroscopic RRE for x
¥ =kfax® — k[P + kb —kyx = f(x). (4.48)

Given a, b > 0, the steady states of (4.48) is solved by f(x;) = 0, while the RRE detailed
balance condition reads

kfax? =k;x3, kb =k;x. (4.49)

. . a kT kF . . . .

This means only when the ratio 7 = #, there exists a unique detailed balanced equi-
172

librium x;. Indeed, in this case, f(x) = <Z—‘:x2 + 1) (k3 b — k5 x). Especially, there is no
2

external flux between chemostats A, B and the environment and thus at the detailed balanced
equilibrium, the system can be regarded as a closed system. Notice in this simple exam-
ple, the complex balance condition (2.6) is same as detailed balance condition (1.12), so
Schlogl model (4.48) is a non-detailed/complex balanced RRE system. One can also check
the deficiency of this model (as defined in Sect. (2.2.1))is§ =4 —-2—-1=1.

kK
Kk
steady states while one of them is an unstable steady state. We denote the corresponding
antiderivative of — f(x) as Y(x). Y(x) is a Ginzburg—Landau double well potential with
two stable states, which determines the bifurcation and the first order phase transition. At
a non-equilibrium steady states x*, by elementary calculations, there is nonzero steady flux
filx®) == @7 (%) — @7 (x*) < 0 < fo(x%) := ®F (x°) — ® (x*). The nonzero steady
flux maintains a source-production circulation § — B — X — A — {} in this
open ecosystem at either one of the non-equilibrium steady states. This ecosystem continues
exchanging both chemical energy and materials with its environment. Compared with equilib-
rium, the open system continues converting the chemical energy into heat at non-equilibrium
steady states. The positive entropy production rate is

In general, assume % #*

and f(x) has three zero points. Two of them are stable

+/..5 (xS
DL | T (@F () — &5 () log 22

TS = kg T(®F (x*) — @7 (x*))1
S = ks T(®] (x*) 1 (%)) log o () D5 (x%) ~

b
which characterizes the irreversible process.

With this simple non-equilibrium reaction system, we illustrate how to find a transition
path as a least action curve (in the sense of the large deviation theory in [2, Theorem 1.6])
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connecting two non-equilibrium steady states. In general, Y (x) is not symmetric but without
loss of generality we simply assume the following symmetric form

T(x) = %_[(x -0 — 12 (4.50)

This typical symmetric double well potential has two stable local minimums 6 + r and an
unstable critical point 6 provided (k;)?a? — 3k; k; > 0. Then f(x) = —d,Y (x) implies

uk]+ ‘/az(k+)2 3k ks
zk; V3ky
the fluxes in (4.47), the Harmltoman is
H(p,x) =[®] (x) + @5 ()1(e” — 1) + [P} (x) + D, ()] " — 1)

=(ki ax® + kS b)(eP — 1) + (k; x* +ky x) (e — 1),

. Here kJr will be a slaver parameter to ensure symmetry. With

(4.51)

which is strictly convex w.r.t p. This degeneracy is due to the same reaction vector yields a
flux grouping. Denote
D)+ Py (x) kx4 kyx

a(x) .= = i
) Of(x)+ @ (x)  kfax?+kyb

Then we know p = 0 or p = loga(x) are solutions to H(p,x) = 0. By elementary
calculations, one can verify

V,H(p, x)]pzo =f(x) = —va(p,x)|P=loga, (4.52)
and the symmetry w.r.t log“
H(p,x)=H(oga — p,x), Vx,p. (4.53)

Assume the *downhill’ RRE starts from some initial state X(0) and then goes to one stable
state X(T;) — O — r. Here ¢ > 0 is the g-neighborhood of § — r and T, — 00 as
& — 0. Then by Proposition 4.6, the modified time reversed solution ¥®(#) and pM?(¢) =
pR(t) + c}()_c'R(t)) = log  is still a least action solution starting from X§ = X(T,) ~ 6 —r
and ending at xT = X(0) and satisfy the same Hamiltonian dynamics.
In this 1D example there always exists a potential function ¥**(x) such that log o (x) =
0y ¥*%(x). This ¥*® is the steady solution to the HJE, and is a Lyapunov function to RRE
(4.48). From Proposition 4.6, the least action value is given by the path affinity

Act(R*() = ¢ Gp) — ¥ G5) = ¥ (x(0) — ¥** (@ — 7). (4.54)

However, we point out energy landscape ¥**(x) computed from logo = 9,¥*® is not
same as the double well potential Y (x) in RRE (4.48). They are two different Lyapunov
functions but have same increasing/decreasing regimes. Indeed, Since d,v¢**(x) = log«
is the steady solution to the HJE, so by Proposition 3.1, ¥**(X) is a Lyapunov function
satisfying

dyss
dr

Therefore, 9, Y and 9,1** has the same monotonicity. Although ** is also a double well
potential with the same stable/unstable points as Y, the affinity of the path is given by the
difference in terms of /** instead of Y. At each basin of attraction of stable states, **
coincides with the so-called quasipotential, as explained in (4.38).

=0, ¥ x = =9, YT (x)3, ¥* (x) < 0. (4.55)
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Below, we also study the effects of perturbations of chemostats in this sustained non-
equilibrium system, specifically, the linear response of the energy landscape y¥** to a
perturbation of the external flux represented by chemostats. Denote the concentration of
chemostats as a generic parameter b with perturbation eb, & < 1. Then the energy landscape
satisfies the steady HJE with parameter b

H(VY** (%), %, b) = 0= H(V(* (X) 4+ e (X)), X, b + €b). (4.56)

Here ¥ (X) + e/**(¥) is the new energy landscape under perturbed chemostats. Then
Taylor’s expansion w.r.t. ¢ gives the leading order equation

V,H(VYS (7)), %, b) - V™ (X) + Vo H(VY* (X), X, b) - b = 0. 4.57)

If further assume the symmetry (1.26) for Hamiltonian, the response energy landscape per-
turbation is given by

dyrss (3 (1))

= VIS E®) -3 = Ve H(VY* (3), %, b) - b. (4.58)

The rigorous justification for this linear response relation can follow the method in Hairer
and Majda [32].

5 Existence of y/** and Diffusion Approximation for Transition Paths

We have shown in previous sections that the stationary solution ¥** (x) to HJE (1.17) serves as
the energy landscape of chemical reactions, facilitates the conservative—dissipative decompo-
sition for RRE, and also determines both the energy barrier and thermodynamics of chemical
reactions. For a detailed/complex balanced RRE, we simply have a convex stationary solution
Y35 (X) = KL(X||X®); see Lemma 3.6. For general chemical reactions, the existence of 1
and obtaining ¥*® via optimal control problem will be discussed in this section. Based on
the strong gradient formulation (4.17) under detailed balance assumption, a drift-diffusion
approximation, which shares the same energy landscape and same symmetric Hamiltonian
structure, gives a good quadratic approximation near not only the ’"downhill” solution to the
macroscopic RRE but also the "uphill’ least action curve; see Sect. 5.2.

If a positive steady state 7 (X,) to the mesoscopic master equation (1.5) gxists, then one
way to obtain ** is from the WKB expansion ¥%* (X) = limy _ 100 w. Rigorously,
under the assumption that there exists a positive detailed balanced 7z, , an USC viscosity solu-
tion to the stationary HJE (1.17) in the Barron-Jensen’s sense [9] was constructed in [24]
by using this invariant measure 7 (X,). For the general case without detailed balance, the
existence of viscosity solutions to HJE can also be obtained using the dynamic program-
ming method. In [72, Theorem 2.2, Theorem 2.41], viscosity solutions are constructed via
the minimization of the action functional inf7 3.y Acty, 7 defined in Sect. 2.4. So we use
Hamiltonian H(p, X) to reformulate the transition path problem as a dual problem of the
Maupertuis’s principle of the least action problem (4.39). That is to say, we regard p as a
control variable, then the least action problem is a constrained optimal control problem in
a undefined time horizon (a.k.a infinite time horizon with an optimal terminal time [20]);
see Sect. 5.1. Then the energy landscape 1** is then represented as the unique weak KAM
solution to HJE satisfying given boundary data on the projected Aubry set since the projected
Aubry set is a uniqueness set for weak KAM solutions [25].
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5.1 Existence of the Stationary Solution y/* via Optimal Control and Viscosity
Solution

Assume x* and x® are two steady states to RRE belonging to the same stoichiometric com-
patibility class such that X* — X® € G. For the most probable path described by a least action
problem with L defined in (2.29), recall the minimization problem (4.38) based on Mauper-
tuis’s principle. Without the explicit formula of L, using the Hamiltonian H (p, X), we first
reformulate (4.38) as the following control problem. Regarding p as a control variable, we
minimize the running cost described by the action functional in an undefined time horizon

T
v(y; X4 0) = inﬁ/ (P-VpH(p.X)— H(p,X)+c) dr,
0

T.p (5.1)

st.X=V,H(p,X), t €(0,T), X=3x" ¥r=5.

Here v(y; X%, ¢) is called the value function, ¢ > cg is an energy level and ¢ is a critical
minimum energy level such that

T
inf f (L(X(1), X(1)) + co) dt = 0 (5.2)
T.x()Jo

and if ¢ < ¢ this inf becomes —oo. From the definition of the critical minimum energy level
(11]

T
¢o = sup{c € R; F closed curve ¥(-) s.t. / (L), X(1) +¢)dr <0}, (5.3)
0

it is easy to see that for the Lagrangian L and Hamiltonian H in chemical reactions, the
critical level cg = 0. Indeed, on the one hand, since L > 0 due to Lemma 2.5, so we know
at least ¢y < 0. On the other hand, if ¢y < 0, then one can choose a standing curve X(z) = y
at a steady state y of RRE such that X = ﬁ(y) = 0. Then one have L(fc ,X) = 0 while
S (LG@), %(0)) + co) dt < 0.

From [72, Theorem 2.39 and Theorem 2.47], we know for any ¢ > ¢y, the value function
v(y; X%, c) is a viscosity solution to the following static HIE

H(Vv(y),y) =c, Vy (5.4)

due to ¥4 is a steady state of RRE. In the chemical reactions, ¢ = 0 = co, the above
v(y; X*) = v(y; X*,0) is a viscosity solution to HIE H(Vv(y), ¥) = 0. However, these
viscosity solutions are not unique.

Now we describe a selection principle via the weak KAM theory [34] and then the global
energy landscape ¥*S can be represented via the following weak KAM solution. Assume
there are only finite steady solutions to RRE, denoted as the Aubry set A = {¥}/_,. Then

Y (X) = min (¥*°(X*) +v(X; X)) (5.5)
XheA

is the unique weak KAM solution to stationary HJE satisfying given boundary data on the
projected Aubry set since the projected Aubry set is a uniqueness set for weak KAM solutions
[25].

Remark 5.1 In [45], Lazarescu et al. used a biased Hamiltonian H with observations for

the time-averaged flux and concentration to study the dynamic phase transitions in a long
time limit. In an open system without detailed balance, with mixed boundary condition and
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properly chosen bias for fluxes and concentrations, trajectories converging to a constructed
global attractor was obtained in [45] while the optimality of the biased Hamiltonian dynamics
in the optimal control context was still unclear. Beside the deterministic optimal control
problem described above, one can also directly investigate the stochastic optimal control
problem from the original large number process C* with a fixed volume V. The transition
path theory theory (TPT) was first proposed by E and Vanden-Eijnden in [76], particularly
in [52] for Markov jumping process, to obtain transition paths and transition rates at a finite
noise level by calculating the committor function, i.e., the stationary solution to the backward
equation with two boundary conditions at two stable states A and B. In [26], an optimally
controlled random walk is constructed based on the committor function, which realized
Monte Carlo simulations for the transition path almost surely.

5.2 Construction of a Drift-Diffusion Process with the Same Energy Barrier for the
Transition Path

We have shown the law of large numbers gives the macroscopic RRE however the transition
path is in the large deviation regime. In this section, we construct a diffusion approxima-
tion, which can also be used to approximate the transition path. The most efficient way for
constructing a diffusion approximation is through the Kramers—Moyal approximation for
the master equation. We will show it is exactly equivalent to the quadratic approximation
of the Hamiltonian near the solution to the macroscopic RRE. Then using the symmetric
Hamiltonian, we give a new construction of diffusion approximation that shares the same
energy barrier for transition paths.

Near the minimizer of Acz(-), i.e., the curve solves RRE (1.6), we have the follow-

ing quadratic approximation for the running cost. Denote s* := V,H (ﬁ,f)|ﬁ=0
Z?il vj (qD;F(J?) - ®;(2)> . Then we have
I B, . .,
H(p,x)=s5s .p—l—ip V,,H(O, X)p +o(|p|%) (5.6)
and for s € G,
ix R T ey N S =0
L(s,x)=max(s —s)-p—=p V, HO,x)p + o(|p|). 5.7
peG 2 pp

Then approximately we have § — s* = VIZ,I,H (0, X) p* and
R S
LG, %) ~ 2 p V, HO, " (5.8)

One way of constructing a Langevin equation with the corresponding quadratic Hamiltonian

(5.6) is
. = 1 R
d¥ = V,H(0, %) dt +‘/VV12,],H(O,x)dB. (5.9)

Particularly, for our chemical reaction Hamiltonian, Vlz,pH 0,%)=> j (dl'}r()?) + @5 (55))
V; ® V. The above equation is known as the chemical Langevin equation [23].

We now explain the above quadratic approximation exactly corresponds to the Kramers—
Moyal approximation for the CME (1.5). The CME (1.5) can be regarded as a monotone
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scheme for the RRE (1.6); see [24]. The leading Taylor expansion for (1.5) upto the second
order yields a diffusion approximation

M

ap=-v-[p> 7 (@j(z) _ q>]f(2))

j=1
I

+2V

M . N 1
Z(VZ (,,(apj(x) + <1>;(x))) V;,0;)+ 0 (W) ) (5.10)

j=1

This is known as the Kramers—Moyal expansion for the CME. This was also used as ‘system
size expansion’ by van Kampen in [74] and in numerical analysis, it is also called a modified
equation. The corresponding Hamiltonian of (5.10) via the WKB expansion is

M M
HGp.H =Y (7@ - 07®) 5 + % S (OF® + 07 ®) (5% .11
Jj=1 Jj=1

This is exactly the same as the quadratic approximation (5.6) of the original Hamiltonian at
p=0.

However, as illustrated in the Schlogl catalysis model in Sect. 4.4, we point out the above
quadratic approximation for the Hamiltonian works only for a region close to solutions to
the ’downhill” macroscopic RRE. On the contrary, the "uphill’ transition path is apparently
arare transition path in the large deviation regime that is not closed to solutions to the RRE.
[14] also quantified the failure of the simple diffusion approximation via the Kramers—Moyal
expansion when studying the extinction problem for stochastic population model, which is
also an exit problem in the large deviation regime.

Below, we follow the standard procedure for achieving the fluctuation—dissipation relation
to construct a diffusion approximation such that (i) the diffusion model satisfies a fluctuation—
dissipation relation and yields the same energy landscape as the original chemical reaction
process; (ii) the corresponding quadratic Hamiltonian has the same symmetric property; (iii)
the diffusion approximation valid near both the ’downhill’ RRE solution and the "uphill’
most probable path.

Under symmetric Hamiltonian condition (1.26), recall the strong gradient flow in terms
of energy landscape

d b4 byd SS 2
5= —KXxX)Vy*(x),

KX = % fol Vf,pH (OVYrs3 (X)) do. Following the standard technique for achieving the
fluctuation—dissipation relation, we use the backward Ito’s integral to construct a drift-
diffusion process

- > 2 -~
dx = KX)Vy* (X)dr +,/ VK dB, (5.12)

where dB means the multiplicative noise in the backward Ito’s integral sense [42]. In the
standard forward Ito’s integral sense, this reads

1 2
dF = —K@Vy" @) di + V- Kdi+ /2K dB. (5.13)
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Then the Fokker-Planck equation is

3 1 ss RS

%__y. (e*VW KV (peV‘/f )) .
ot %

(i) This equation has an invariant measure 7 = e~ Vs, (ii) The invariant measure satisfies the

detailed balance condition, since the Fokker-Planck operator V - (n'K \Y (ﬁ)) is self-adjoint

in L2(z—1); (iii) For any convex function ¢ (x), the dissipation relation holds

d 1
7 (Z)dr =10/ (2) a0 = - (kVE ¢ (2)VE) <0, 514
dr b4 m \% b4 14 b4

Here the invariant measure yields exactly the same energy landscape as the original chemical
large number process ¥** = — 1027 The corresponding quadratic Hamiltonian is symmetric

%
w.r.t. Vs (x)

H(p, %)= (p— VY™ X)) - Kp=HNVY" &) - p,X). (5.15)

We point out this diffusion approximation (5.12) has a covariance fol Vf} » H@OVYsS(x),x)do
but the diffusion approximation using chemical Langevin equation (5.9) has a different covari-
ance Vlz,p H (0, X) is different from the previous diffusion approximation (5.9) near RRE at the
central limit regime. We remark the diffusion approximation (5.12) satisfying fluctuation—
dissipation relation is also used in [22, 29, 56] to study the stochastic uncertainty relation for

a general process.

6 Discussion

In this paper, we revisit the macroscopic dynamics for some non-equilibrium chemical reac-
tions from a Hamiltonian viewpoint. The concentration of chemical species is modeled by
the nonlinear RRE system, which is the thermodynamic limiting equation from the law of
large numbers for the random time-changed Poisson representation of chemical reactions.
The Hamiltonian defined from the WKB expansion determines a HJE, and the minimizer of
the dynamic solution recovers the solution to the RRE. The stationary solution ¥** to HIE
serves as the energy landscape for general non-equilibrium reactions. The existence of 1/**
is represented as an optimal control problem in an undefined time horizon, which can be
represented as a weak KAM solution to HJE. More importantly, we use ¥** to decompose
RRE into a conservative part and dissipative part, which, together with the additional mass
conservation law, gives raise a GENERIC formalism for RRE. Through v**, the thermody-
namics for non-equilibrium reactions can also be decomposed as nonadiabatic and adiabatic
parts, where the later one maintains a positive entropy production rate at NESS.

We then study the energy dissipation relation at both mesoscopic and macroscopic levels
and prove the passage from the mesoscopic one to the other. A non-convex energy landscape
¥*% emerges from the convex mesoscopic relative entropy functional KL(p,||7,) in the large
number limit, which picks up the non-equilibrium features. This mean-field limit passage also
applies to the symmetric property in a chemical reaction. Particularly, the mesoscopic Markov
chain detailed balance leads to a symmetric Hamiltonian, while the markov chain detailed
balance is not equivalent to the more constrained chemical version of detailed balance. The
non-convexity of the macroscopic energy landscape 1**, naturally brought by a grouped
polynomial probability flux, enables us to study a class of non-equilibrium chemical reaction
with multiple steady states, for instance the bistable Schlogl model. However, we point
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out multiple steady states and non-convex energy are also common in other equilibrium
statistical physics such as the Lagenvin dynamics with non-convex potential and Ising model
of ferromagnetism.

We then focus on finding transition paths between coexistent stable steady states in some
non-equilibrium biochemical reactions using a symmetric Hamiltonian w.r.t. the stationary
solution Vy**. Under this symmetric condition, the transition path is explicitly given by
piecewise least action curves, where the "uphill’ curve is a Vi/**-modified time reversal of
the ’downhill’ least action curve, where 1/** also gives the energy barriers and path affinities.

The bistability and bifurcation in Schlogl’s model appear in many general forms, such as
the Stuart-Landau equation for general sustained nonlinear oscillating system with appli-
cation for the Belousov—Zhabotinsky reaction. When including spatial variation in the
reaction—diffusion equation for spontaneous spatial pattern formation, the double well bista-
bility generates the Turing pattern while the Fisher-KPP bistability generates traveling waves.
We also study a quadratic approximation for the Hamiltonian near the RRE solution, i.e.,
the mean path in the sense of the law of large numbers. However, we point out the transition
path problem in chemical reaction is in the large deviation regime and the associated energy
barrier can not be computed by a simple quadratic approximation. Instead, based on the
strong form of gradient flow in terms of free energy y**, we construct anther drift—diffusion
approximation which shares the same symmetric Hamiltonian and energy barrier for the most
probable path connecting two non-equilibrium steady states.
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Appendix A: Master Equation and Generator

A.1 Master Equation Derivation

We will only compute the generator for the portion of the forward reactions with the forward
Poisson process ¥; = Y;' in (1.2), because the backward portion is exactly same. Consider

M

o o t
X(t)=X0)+)_ Ui LRy 45,20 Y (/0 97 (X(5)) ds) (A1)
j=1

+

For any test function f € Cp, since R;“(t) = Y/.Jr (f(f ®;

representing the j-th reaction, so

()}(s)) ds) is a counting process

M
FE@) = FEON+ Y. /0 Lo e,z (FX G2 +5) = F(R(5-)) dR ().
j=1

(A.2)
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From [3, Thm 1L.10], M} (1) := ¥} ( Ja ot (Xs) ds) — J3 9 (X(s)) ds is a Martingale.
Thus (A.2) becomes

FE@) =fEO)+ Y / Loy ia,20 9] X6 (FRE) +5) = F(RG)) ds
j=1"?
v (A3)
+ Z/O 1 %5 y45,20) (f()?(s_) +7,)— f()?(s_))) M ().
j=1

_ Now we derive the master equation for X (t) € NV, Denote the (time marginal) law of
X(t) as

Pl 0 =E (1g,). (A4)
where 1 is the indicator function. For any f : ZV - R, f()?) = f(?z)]l)}(?z), and
E(f(X)) =Y f@HEQLzG) =Y fi)pi.1). (A5)
n n
Taking expectation for (A.3), we have the Dynkin’s formula

Ef(X(@) =Ef(XO)+ /0 E (115,209 K@) (fX 6 +7)) = (X)) ds.
j=1

(A.6)
Taking derivative yields
d M
3 2 f0p@n =3 3 ¢ (fG+7) - f@D)pii.o
i Jj=11>0,7i+v;>0
M
= D @i G)fGi+))pGi, )
Jj=11n>0,14+v;>0
M
- @7 (i) f )i, 1)
j=11>0,7+v;>0
M
:Z Z </’f(ﬁ—17j)f(ﬁ)l7(ﬁ—\7j,t) (A7)

M
=S ( S eGP~V

1n>0 j=1 ﬁ*lﬂ)jz()
M
+ - -
- > efGpGn|.
Jj=1.74v;>0
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Then the master equation for p(i, t) is

M M
d S L o
LPED = Y @G- ppGi=vn - Y ¢fGpG.n. (A8)
j=1,i—v;>0 j=1,14v;>0

After including the backward reactions with ¥ —,

M M
d . I I, o
5 P00 = Yo efG-Tppa—vi,0— Y ¢ Gpdi, 1)
j=1,i-1;20 j=1,i+V;>0
(A9)
M M
D R RN VIR D E S S (VI
j=1,149;>0 j=1,ii—v;>0
Therefore, for the chemical reaction described by (1.2), the master equation is
d M
- + > - - - — > -
ap(n,t): Z (goj (n—vj)p(n—vj,t)—goj (n)p(n,t))
j=1,ii—9;>0 ALO
M (A.10)
> (@G0 — ef @p.D).
J=1747;20

Similarly, one can derive the master equation for the rescaled large number jumping

process C"(t).
We only compute the generator for the portion of the forward reactions. Notice R;r ) =

¥; (V Jy ®7(C*(s)) ds ) is a counting process and M} (1) = 4 Y7 (V [ ®7(C*(s)) ds) —
fot CI>;T(C"(s)) ds is a martingale. Similar to (A.3), we obtain for any f € Cp,

M 1 l—)»
FEC @) =f(C O+ /0 LN (f(C"(sf) + ) f(CV(L))) AR (s)
j=1
M -
=f(CcO)+y. / VI s $(C) (f(CV(S) + 20— f(C"(S))> ds
A = Jo {CV()+ =0 7 %

Mo -
B v Yiy_ v +
+;/0 Vﬂ{CV(.L)+"7fZO) (f(C )+ - f(C (S—))) dM; (s).

(A.11)

Then using Ef(CY(¢)) = % > S (X,)p(X,, 1), we obtain the generator Q, for the large
number process C*(¢) for fixed V
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d L N A A

5 2 S GpE.n =V 37 Y TG (.f(xv + "7’) - f(x») PG, 1)
X x>0 . S Y

v V= J:1,xv+7120

M _)A
s a0 (16 - - 60 pn
j=1. 5= E 20

=Y (O NHE)pE, 1),

(A.12)

Here in the definition of generator, one can define a zero extension for the region outside
X, > 0.

Appendix B: Mean-Field Limit RRE for C"

Since the original proof for the mean filed equation of chemical reaction C" in [3, 43] omitted

the ‘no reaction’ constraint outside nonnegative region, so we provide a pedagogical proof
after including the constraint X, & VV’ > 0.

Assume there exists a solution ¥,(-) € C'([0, T1; Ri) to RRE (1.6) and x;(t) > O for
all t € [0, T] and each component i. Recall R(¥) = 2?4:1 Vj (ij()_c’) -0 (Z)) defined in
2.2).

Fix ap > 0 such that the RRE solution tube Q,, := {¥; max,e[o,77 1y —X()| < ao} C Rﬁ.
For any 0 < a < ay, since Ris locally Lipschitz, there exists K, such that [R(%) — §(§)| <
K,|X — y| for X, § € ©,. Then we define a stopping time

T.. = inf{t; |C' (1) — ()| > a). (B.1)

Then fort <7,,,C" % VV’ C Qg C Rf for V large enough, so the ‘no reaction’ constraint
in process (1.4) does not turn on before 7, ,. Thus from the martingale decomposition (A.11),
by Doob’s continuous time optional stopping lemma,

NTva
C'(t A1yq) =CY(0) — X(0) + M, (t A Ty0) + / R(C"(s))ds, (B.2)
0

where
> t t
M,(t) = Z % <Y;r <V/O @jr(cv(s)) ds) + Yj_ <V/O <1>jf(cv(s)) ds))
j

t
¥ / OF(C(5) + B (C*(5)) ds (B.3)
0

is a martingale. Here for simplicity, we assume the mesoscopic and macroscopic LMA are
same @f x) = <I>Ji (X) and then drop tilde. Compare the trajectory of SDE (1.4) with solution
to RRE (1.6)

Cv(t A rv,a) - )-C)(t A tv,a) :CV(O) - 2(0) + Mv(t A ‘Cv,a)

ATy o (B.4)
+/0 [R(CY(s)) — R(x(s))]ds.
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Thus
ICY(t A Tya) — X(t ATya)| <ICY(0) — X(0)]

IATy.q B (B.5)
+|Mv(l/\fv,u)|+Ka/ [C*(s) — x(s)] ds].
0

Then by Gronwall’s inequality, we have

IC'(t AT — X AT < [1C70) = 30)+  sup My (s)] ) X' (BL6)
I1<s<tATyq

Notice that the process C" is right continuous, then by definition of 7, ,, we have

{max |C"(s) =X($)| > a} CHC* (A T) =X AT 2 a). (B.7)

Then by (B.6),

{max |C"(s) —X®))>a) C{ICO) =X + sup [M(s)| = ae” ')

1<s<tATyq

2 . (B3
CHC O =FO) = T VUL swp M) = e Ky,
1<s<tAtyq 4
Then by Doob’s maximal inequality for submartingales, we know
2 462K,,t
P sup M) = e} < UM, A 7)) (B.9)
a

1<5<tATyq

Using the estimate of martingale M,

=2
vl
V2

M
E(M,(t At)P) =)

Jj=1

IATy.q
E (v f [P (C(5) + @ (C* ()] ds) :
0

we know

2Kt

Plmax 1C°(5) ~ ¥)] > @) = PIIC'0) ~ 50)| = 5e~) + T BM, 0 A v P)

(B.10)
v 4 a — Kt 1
<P{C"(0) —x(0) = e "'} + Co—.
2 \%
Then for arbitrarily small a, we conclude that if C¥(0) — x(0), (1.8) holds, i.e.,
lim ]P’{max |CY(s) — X(s)| > a} =0. (B.11)

V—+o00

Appendix C: Proof of Lemma 3.6

We give the proof of Lemma 3.6 by some elementary computations and collecting existing
results.

Proof of Lemma 3.6 Step 1 We prove the equivalence between (i) and (ii).
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Plugging identity (2.12), we obtain the identity

X oo IR A€ (e
B _; (q)j (x) (‘D}@S) B 1) it (q>;(;s) !
P (x) T ” 7(}) . o
_Z( ) J (¢+ "S) —d (xs)) Z <%) J (@;(}S) _ (D;L(}S))
j

Similar to (2.10), rearranging according to the reactant complex 7 € C, we have

2 N
H(log%,i):Z(%) 3 (¢j(iS)—cb;(zS))+ 3 (da;(?)—cbj(?)) (C.2)

eC e Lotz
n jivy=n jivi=n

Then complex balance (2.6) is equivalent to H (log %, X)=0.

Step 2, assume (i), i.e., X satisfies complex balance condition (2.6), then one can construct
a stationary distribution 7y via the product of Poisson distributions with intensity Vx® [3,
Theorem 3.7] (see also [1])

N
logry (%) = Y (nl- log(Vx!) — log(n;!) — fo), ii= Vi, (C3)
i=1
for the chemical master equation (1.5) with & = ¢/V for a fixed volume V. Thus (i) implies
(iii). )
Step 3, assume (iii), for any X € Rf, let Xy = ; — X as V — 400, then the limit in
WKB approximation for wy exists

5 N
—logny(xy)

Jlim v Zl (xi logx; — x; logx! + x§ — x;) = KL(F||F) = ¥** (¥).
=
(C4
Indeed, changing to variable Xy = % and using the Stirling’s formula, we have
10g T(v ()Cv) 1 N | s | s |
eV V Z nilog(Vx;) —n;log(n;) +n; — Vx; + O( ogni))
N’=1 N (C.5)
O ;' logn;
:Z (xi logx! — xilogx; +x; — x7) + M
i=1
- N = 7 > . . O(ZNIOgn,') ..
Then for any fixed x € R™, xy = {; — x implies —=—~— — 0as V — +o00. Thus (ii)
follows. s

Appendix D: Phosphorylation-Dephosphorylation with 2-Autocatalysis

The Schlogl model can be regarded as a simple but representative example which keeps the
main features of non-equilibrium enzyme reactions. As the one of the most important enzyme
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reaction in a single living cell, the phosphorylation—dephosphorylation reaction system (c.f.
[63]) also fits into the symmetric Hamiltonian framework.

Here we briefly revisit the phosphorylation-dephosphorylation with 2-autocatalysis pro-
posed by Fischer-Krebs in 1950s.

k" kF K
E+ATP+K* = E*+ ADP +K*, E*+P = E+Pi+P, K+2E* = K"
K K oy

D.1)

Here the concentration of a protein in its open state (the phosphorylated E) is denoted as
x(¢t) = [E*] while the concentration of a protein in its close state is y(t) = [E]. The
third reaction equation representing the reversible binding is rapid and thus is assumed to
be quasi-static. Under this quasi-static assumption, the active kinase K* in the first reaction
equation has a positive feedback from 2E*, which is known as 2-autocatalysis. We also
regard the concentrations of the inactive kinase K, phosphatase P, adenosine triphosphate
ATP, adenosine diphosphate ADP and phosphate group Pi as constant that sustained by
environment.

From y = —X, we know the conservation of total mass of two proteins and thus y(¢) =
[Etor] — x(2). The RRE is given by

¥ = (af [KIx*y + a5 y) — (@ [K1x® + afx) = [®F (x) + @F (x)] — [®] (x) + &, ()]
(D.2)

where we lumped chemostats into rates and used quasi-static relation:

K k3
af =k[[ATP1->, ay =k [ADP1->, af =k~ +2[P], a; =k; [Pil[P].
k3 k3

We take [K] as a bifurcation parameter for the first order phase transition. The right-hand-side
of (D.2) is adouble well potential raising from the flux grouping property. This 2-autocatalysis
model is basically same as the Schlogl model after effectively eliminating the quasi-static
third reaction equation, so the mathematical analysis are same.
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