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PROJECTION METHOD FOR DROPLET DYNAMICS ON
GROOVE-TEXTURED SURFACE WITH MERGING AND

SPLITTING∗

YUAN GAO† AND JIAN-GUO LIU‡

Abstract. The geometric motion of small droplets placed on an impermeable textured substrate
is mainly driven by the capillary effect, the competition among surface tensions of three phases at
the moving contact lines, and the impermeable substrate obstacle. After introducing an infinite
dimensional manifold with an admissible tangent space on the boundary of the manifold, by Onsager’s
principle for an obstacle problem, we derive the associated parabolic variational inequalities. These
variational inequalities can be used to compute the contact line dynamics with unavoidable merging
and splitting of droplets due to the impermeable obstacle. To efficiently solve the parabolic variational
inequality, we propose an unconditional stable explicit boundary updating scheme coupled with a
projection method. The explicit boundary updating efficiently decouples the computation of the
motion by mean curvature of the capillary surface and the moving contact lines. Meanwhile, the
projection step efficiently splits the difficulties brought by the obstacle and the motion by mean
curvature of the capillary surface. Furthermore, we prove the unconditional stability of the scheme
and present an accuracy check. Convergence of the proposed scheme is also proved using a nonlinear
Trotter–Kato product formula under the pinning contact line assumption. After incorporating the
phase transition information at splitting points, several challenging examples including splitting and
merging of droplets are demonstrated.

Key words. free boundary, obstacle problem, variational inequality, mean curvature flow,
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1. Introduction. The contact line dynamics for droplets placed on an imperme-
able groove-textured substrate is a historical and challenging problem. The capillary
effect caused by the interfacial energy dominates the dynamics of small droplets, be-
cause the ratio between the surface area and the bulk volume is large. The capillary
effect is particularly important to the moving contact lines, where three phases (liquid,
solid, gas) meet. For small droplets with capillary effect, the geometric dynamics is
essentially a mean curvature flow for the capillary surface (the interface between fluids
inside the droplet and gas surrounding the droplet) associated with free boundaries
(moving contact lines) on the impermeable groove-textured substrate. The mechan-
ics for the contact line dynamics is determined by Onsager’s linear response relation
between contact line speed vCL and the unbalanced Young force FY ; see (2.17). The
dynamic contact angle θCL then tends to relax to the equilibrium contact angle (i.e.,
Young’s angle θY ) which is determined by the competitions among the surface tensions
of three interfaces at the contact lines; see (2.5).

The dynamics become more complicated after considering a nonlocal volume
preserving constraint, a groove-textured substrate with constantly changed slopes,
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B311

a gravitational effect, and unavoidable topological changes such as splitting and
merging due to the impermeable groove-textured substrate. In this paper, we fo-
cus on variational derivations, numerical methods, and stability/convergence analysis
for this challenging obstacle problem coupled with the droplet dynamics, which con-
sist of (i) an obstacle-type weak formulation of the motion by mean curvature for the
capillary surface and (ii) the moving contact line boundary conditions.

On the one hand, for a pure mean curvature flow model with an obstacle but
without contact line dynamics, we refer to [1, 33] for local existence and uniqueness
of a regular solution by constructing a minimizing movement sequence. On the other
hand, for the moving contact line boundary condition coupled with the quasi-static
dynamics for the capillary surface, there are some analysis results on global existence
and homogenization problems; see [6, 23, 26, 17] for the capillary surface described
by a harmonic equation and see [7, 8, 9, 18] for the capillary surface described by a
spatial-constant mean curvature equation. Particularly, using a minimizing movement
method with a set-distance as a dissipation functional, [17] constructed a unique
global solution starting from a star-shaped initial wetting domain but under a quasi-
static assumption for the capillary surface and with a Dirichlet energy instead of an
interfacial energy. This construction for the free boundary problem was first developed
in [2] and [32] independently, which are indeed the original works giving rise to the
lately developed minimizing movement method for general problems.

However, the contact line dynamics for droplets with an unavoidable topological
change including splitting and merging due to an impermeable obstacle are lack of
study in terms of both variational derivations, mathematical analysis, and efficient
algorithms. Particularly, the original minimizing movement discretization for the
mean curvature flow uses a set-distance, which is very hard to implement numerically.
It is even more complicated to implement for obstacle problems with moving contact
lines and splitting phenomena.

First, we will regard the full dynamics of a droplet with moving contact lines and
an impermeable obstacle substrate as a curve on an infinite dimensional manifold M
with a boundary; see section 2.2.1. Then after introducing a free energy F , an admis-
sible tangent space TM, and a Rayleigh dissipation functional Q, by using Onsager’s
principle for an obstacle problem, we derive two parabolic variational inequalities
(PVIs); see PVI (2.26) for a virtual velocity formulation and see PVI (2.29) for a
virtual displacement formulation. PVI (2.29) is derived by minimizing a Rayleighian
in a subset of the admissible tangent space; however, it is computationally friendly
and we will prove that these two versions of PVIs are equivalent and have the same
strong formulation (see Proposition 2.1).

Second, after including a textured substrate, for PVI (3.31), we propose a numer-
ical scheme based on an unconditionally stable explicit updating for moving contact
lines and a projection method for the obstacle problem; see section 3.1. The explicit
boundary updating efficiently decouples the computations for the moving contact line
and the motion of the capillary surface. Meanwhile, the projection operator for the
mean curvature flow of droplets with volume constraint has a closed formula char-
acterization (see (1.4) and Lemma 3.2), so the proposed numerical scheme based on
the projection method (splitting method) is very efficient and easy to implement.
Unconditional stability of the projection method is proved in Proposition 3.1, which
focuses on the difficulties brought by the moving contact line, and the motion by
mean curvature with an obstacle. We also find the pure PVI formulation misses the
phase transition information at splitting (merging) points where the interface between
two phases becomes an emerged triple junction of three phases, so pure PVI is not
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B312 YUAN GAO AND JIAN-GUO LIU

enough to correctly show the physical phenomena. Therefore, we enforce the phase
transition and contact line mechanism at emerged triple junctions in the last step of
the projection method to incorporate both the obstacle information and the phase
transition information at splitting points; see section 3.1.

Next, we provide an analytic validation for the proposed projection method above.
Notice that after the explicit boundary updating step, the problem is reduced to
finding an efficient implementation of a minimizing movement for a pinning contact
line case. In this case, the full dynamics of droplets with an obstacle and volume
constraint can be formulated as a gradient flow of the sum of two convex functionals
F+IK in a Hilbert space. More precisely, let K be a closed convex subset in a Hilbert
space X1; see specific definition (3.32) and (3.37) in section 3.3.2 after including the

volume constraint. Thus using an indicator functional IK(u) := { 0, u ∈ K;
+∞, u /∈ K, , to

seek solution u(t) ∈ K of PVI (3.31) is equivalent to seeking the unique mild solution
[5] in X1 generated by the sum of two maximal monotone operators ∇F + ∂IK , i.e.,

∂tu(t) ∈ −(∇F + ∂IK)(u(t)) for a.e. t > 0, u(0) = u0.(1.1)

Notice here we already take advantage of the efficient local information from Gâteaux
derivative ∇F instead of using the subdifferential ∂F . Then the standard minimizing
movement scheme (backward Euler scheme) is given by the resovent representation

uk+1 = (I + τ(∇F + ∂IK))
−1

uk.(1.2)

Inspired by a nonlinear version of the Trotter–Kato product formula [25] in Hilbert
space X1, the resovent can be approximated by

uk+1 = (I + τ∂IK)−1(I + τ∇F)−1uk.(1.3)

In Lemma 3.2, for a given reference capillary profile u∗ satisfying impermeable ob-
stacle condition u∗ ≥ 0 and the volume constraint

∫
u∗ ≡ V , we give the resolvent

characterization for the projection operator ProjK(ũk+1 − u∗) in X1,

uk+1 = u∗ + (I + τ∂IK)−1(ũk+1 − u∗) ⇐⇒
{

uk+1 = max{ũk+1 + λ, 0},∫
D
uk+1 dxdy = V,

(1.4)

which can be easily implemented. Hence in Theorem 3.3, based on the alternate
resolvent reformulation (1.3) of our projection method, we apply the Trotter–Kato
product formula [25] to finally prove convergence of the projection method in X1.
The spirit of the projection method is same as the one for other efficient splitting
methods when solving some important physical problems such as the incompressive
Navier–Stokes equation [10, 40] and the Landau–Lifshitz equation [14].

Finally, in section 4, we use a projected triple Gaussian as an initial droplet profile
to check the order of convergence of the proposed projection method. The moving
contact line, the capillary surface, and the dynamic contact angle all have a perfect
first order accuracy. Then several numerical simulations are conducted including the
splitting of one droplet on an inclined groove-textured substrate and the merging of
two droplets in a Utah teapot.

There are also many other numerical methods for computing the geometric motion
of droplets with moving contact lines or for general geometric equations with an
obstacle; cf. [30, 34, 47, 16, 15, 44, 45, 42, 3] and the references therein. Particularly,
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B313

we compare with those closely related to the geometric motion of droplets with moving
contact lines and an impermeable obstacle. The mean curvature flow with obstacles
is theoretically studied in [1] in terms of a weak solution constructed by a minimizing
movement (implicit time-discretization). The L2 penalty method for the obstacle
problem is introduced in [21, 39], and recently an advanced L1 penalty method was
introduced in [41, 48]. They replace the indicator functional IK(u) in the total energy
by an L2 (resp., L1) penalty µ∥(g−u)+∥L2 (resp., µ∥(w−u)+∥L1) with a large enough
parameter µ. The threshold dynamics method based on characteristic functions is first
used in [45, 42] to simulate the contact line dynamics, which is particularly efficient
and can be easily adapted to droplets with topological changes. The authors extended
the original threshold dynamics method for mean curvature flows to the case with
a solid substrate and a free energy with multiphase surface tensions, in the form of
obstacle problems. However, since they do not enforce the contact line mechanism [11,
37], i.e., the relation between the contact line speed and the unbalanced Young force
vCL = γLG

ξ (cos θY − cos θCL), their computations on the moving contact line and the
dynamic contact angles are different with the present paper and only the equilibrium
Young angle θY is accurately recovered. Instead, the contact line mechanism in [24, 43]
is accurately recovered at each time step. With some local treatments at splitting
points, the authors simulate the pinch-off due to an impermeable substrate of solid
drops described by the surface diffusion with either a sharp interface dynamics or
a corresponding phase field model; see [36] for including hydrodynamic effects. We
point out the explicit front tracking method based on Lagrangian coordinates in [43]
is convenient for simulation of the pinch-off. However, the Courant–Friedrichs–Lewy
condition constraint for this explicit method is severe. Besides, the level-set method
developed in [31, 44] cannot be directly used and also cannot deal with textured
substrates which lead to PVIs for obstacle problems. For other general geometric
equations including the motion by mean curvature for a two-phase flow model, we
refer to a review article [3] and references therein for a parametric finite element
method, which is particularly useful for high dimensional problems.

The remaining part of the paper will be organized as follows. In section 2, we
derive the associated PVIs for the contact line dynamics by Onsager’s principle for an
obstacle problem. In section 3, we propose an unconditionally stable explicit bound-
ary updating scheme coupled with the projection method for solving PVI and the
phase transition information for merging and splitting. The stability and convergence
analysis are given in sections 3.2 and 3.3. In section 4, we give an accuracy check
for the projection method and conduct several computations including merging and
splitting of droplets on groove-textured substrate.

2. Parabolic variational inequalities of droplet dynamics derived by
Onsager’s principle with an obstacle. In this section, we derive PVIs for the
contact line dynamics with an impermeable substrate as an obstacle. We first intro-
duce the configuration state (the contact domain and the capillary surface) and the
free energy of the contact line dynamics. Then we regard the configuration space as
an infinite dimensional manifold with a boundary and give kinematic descriptions for
the full dynamics including admissible velocities and the first variation of the free
energy on the manifold; see sections 2.1 and 2.2. Next, after introducing a Rayleigh
dissipation functional, we derive a model for the droplet dynamics with obstacle by
energy considerations. We apply Onsager’s principle for the obstacle problem to de-
rive two associated PVIs, which can be used to describe the droplet dynamics on a
rough substrate with unavoidable merging and splitting; see section 2.3. Finally, we
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B314 YUAN GAO AND JIAN-GUO LIU

show the equivalence between two versions of PVIs in Proposition 2.1, one of which
will be used to design efficient numerical schemes for the contact line dynamics with
an impermeable obstacle.

2.1. Configuration states, free energy, and kinematic description for
velocities. We study the motion of a three-dimensional (3D) droplet placed on an
impermeable substrate {(x, y, z); z = 0}. Let the wetting domain (a.k.a. the contact
domain) be (x, y) ∈ D ⊂ R2 with boundary Γ := ∂D (physically known as the contact
lines). We focus on the case that the capillary surface S (the interface between the
liquid and the gas) of the droplet is described by a graph function u(x, y). The droplet
domain is then identified by the area

A := {(x, y, z); (x, y) ∈ D, 0 < z < u(x, y), u|Γ = 0}

with sharp interface S := {(x, y, u(x, y)), (x, y) ∈ D}. We will give a kinematic
description and a driven energy in this section.

2.1.1. Configuration state, geometric quantities, and kinematic descrip-
tion for velocities of a droplet. First, from the wetting domain and the capillary
surface defined above, a configuration state of a droplet is chosen to be (Γ, u) with
u|Γ = 0.

Second, given a configuration state (Γ, u) with u|Γ = 0, we clarify the following
geometric quantities; see Figure 1(a). The unit outer normal on the capillary surface is
n := 1√

1+|∇u|2
(−∇u, 1). The unit outer normal at the contact line Γ is nCL := −∇u

|∇u| |Γ,
which in three-dimensions is extended as (nCL, 0). Define the contact angles (inside
the droplet A) as θCL satisfying

sin θCL = n · (nCL, 0) =
|∇u|√

1 + |∇u|2
,(2.1)

which implies tan θCL = |∇u| at Γ.
Third, given a configuration state (Γ, u) with u|Γ = 0, we describe two velocities

of the droplet and their relations. (i) The motion of contact line Γ in the outer
normal direction nCL is described by the contact line speed vCL. (ii) The motion of
the capillary surface along the outer normal n is described by the normal speed vn =

∂tu√
1+|∇u|2

. Here ∂tu is the vertical velocity of the capillary surface, which is convenient

to use in the graph representation. (iii) The continuity equation u(Γ(t), t) ≡ 0 gives
the relation between ∂tu|Γ and vCL.

Fig. 1. Droplets with contact angles θa, θb and surface tensions γLG, γSG, γSL. (a) Droplet placed
on z = 0. (b) Droplet placed on an inclined groove-textured surface with effective angle θ0.
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B315

du(Γ(t), t)

dt
= ∂tu(Γ(t), t) +∇u(Γ(t), t) · ∂tΓ = ∂tu(Γ(t), t) + (∇u(Γ(t), t) · nCL)vCL

= ∂tu(Γ(t), t)− |∇u(Γ(t), t)|vCL = 0,

(2.2)

where we used the fact that nCL := −∇u
|∇u| |Γ.

An important case is to assume the volume preserving constraint∫
D(t)

u(x, y, t) dxdy = V. In this case, by u(x, y, t) = 0 on Γ(t) and the Reynolds

transport theorem, we have∫
D(t)

∂tudx dy =
d

dt

∫
D(t)

u(x, y, t) dxdy = 0,(2.3)

which gives an additional constraint on the vertical velocity.

2.1.2. Free energy for the droplet and Young’s angle. Now we clarify the
free energy of a droplet following the notation and terminologies in the classical book
of De Gennes, Brochard-Wyart, and Quéré [12]. For a droplet placed on a substrate,
the surface tension contributes the leading effect to the dynamics and the equilibrium
of the droplet. Especially, for contact line Γ, where three phases of materials (gas,
liquid, and solid) meet, one should consider the interactions between their surface
energies. Denote γSL > 0 (γSG, γLG, resp.) as the interfacial surface energy density
(a.k.a. surface tension coefficients) between solid-liquid phases (solid-gas, liquid-gas,
resp.). To measure the total area of the capillary surface with surface tension γLG and
the area of the contact domain with the relative surface tension γSL − γSG, we take
the total free energy of the droplet as the summation of the surface energy and the
gravitational energy

F = γLG

∫
∂A(t)∩{u>0}

ds+ (γSL − γSG)

∫
D(t)

dxdy + ρg

∫
D(t)

u2

2
dxdy

= γLG

∫
D(t)

√
1 + |∇u|2 dxdy + (γSL − γSG)

∫
D(t)

dx dy + ρg

∫
D(t)

u2

2
dx dy,

(2.4)

where ρ is the density of the liquid and g is the gravitational acceleration. Besides
gravity, we neglect other forces, such as the inertia effect, viscosity stress inside the
droplet, the Marangoni effect, electromagnetic fields, evaporation and condensation,
etc.

With a fixed volume V , competitions between the three surface tensions will
determine uniquely the steady state of the droplet, i.e., the minimizer of F . Define σ
as the relative adhesion coefficient between the liquid and the solid,

σ :=
γSL − γSG

γLG

.

We remark that the spreading parameter S := γLG(
γSG−γSL

γLG
− 1) could be positive in

the so-called total wetting regime [11, section 1.2.1]. But in the current contact angle
dynamics setup, |σ| < 1. By Young’s equation [46], the equilibrium contact angle θY
is determined by the Young’s angle condition

cos θY =
γSG − γSL

γLG

= −σ.(2.5)

We will only focus on the partially wetting (hydrophilic) case −1 < σ < 0, or equiva-
lently 0 < θY < π

2 . In this case, adhesive forces between the liquid and the solid tendD
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B316 YUAN GAO AND JIAN-GUO LIU

to spread the droplet across the surface and there is a vertical graph representation of
the capillary surface. We refer to [19] for more discussions on dewetting or nonwetting
droplets (i.e., 0 < σ < 1) with a horizontal graph representation for the quasi-static
case.

2.2. Configuration space as a manifold and the kinematic description
for the rate of change of free energy. With the specific driven energy F , we
compute the first variation of the free energy for any given virtual displacement.
Before that, we first clarify the configuration space as a manifold and define the
tangent plane at each point on the manifold.

2.2.1. Configuration space for the obstacle problem: A manifold with
a boundary. Here we first give a derivation by taking a flat impermeable substrate
z = 0 for simplicity. We use an infinite dimensional manifold [28] to describe the
configuration space

M := {(Γ, u); Γ ∈ C1, u ∈ C2(D) ∩ L2(D), u ≥ 0 on D, u|Γ = 0}.(2.6)

The dynamics of the droplet is represented by a trajectory on this manifold. Consider
a trajectory η(t) ∈ M starting from initial state η(0) = {Γ(0), u(x, y, 0)} ∈ M,

η(t) = {Γ(t), u(x, y, t)} ∈ M, t ∈ [0, T ].(2.7)

2.2.2. Obstacle constraint in the tangent plane: A convex closed
subset. Given a configuration state η = {Γ, u}, now we use the vertical velocity
v = ∂tu and the contact line speed vCL to describe the tangent plane TηM. To main-
tain the continuity at the contact line, these two velocities in the tangent plane satisfy
the linear restriction (2.2).

Since the geometric motion has an obstacle condition u ≥ 0, define the coincidence
set as

Bη := {(x, y) ∈ D;u(x, y) = 0},(2.8)

which is a closed subset of D. Manifold M has a boundary, i.e., {η ∈ M;Bη ̸= ∅}. If
Bη ̸= ∅, then η is on the boundary of the manifold M. In other words, the capillary
surface u touches the obstacle on the coincidence set, which will lead to a PVI as
described below in section 2.3.

Given η = {Γ, u}, define the weighted L2 space as the ambient space

Xη := L2

(
Γ×D; ds× 1√

1 + |∇u|2
dx dy

)
(2.9)

with the weighted inner product

⟨q1, q2⟩Xη := ξ

∫
Γ

vCL1vCL2 ds+ ζ

∫
D

v1v2
dx dy√
1 + |∇u|2

(2.10)

for any q1 = (vCL1, v1), q2 = (vCL2, v2) ∈ Xη. Here the constants ξ and ζ are indeed
the friction coefficients, which will be explained later.

Then the tangent plane

TηM := {(vCL, v) ∈ C1(Γ×D); v − vCL|∇u|Γ = 0, v ≥ 0 on Bη} ⊂ Xη(2.11)

is a closed convex cone and is embedded in the ambient space Xη with the same inner
product as Xη. We remark the last inequality for TηM in (2.11) becomes effective
when η sits on the boundary of the manifold M, i.e., Bη ̸= ∅. If Bη = ∅, then the
tangent plane TηM is a linear subspace of Xη.
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2.2.3. First variation of the free energy. For an arbitrary trajectory η̃(s) =
{Γ̃(s), ũ(x, y, s)} (a.k.a. virtual displacement) starting from η̃(t) = η(t) at the tangent
direction

η̃′(t) = {∂tΓ̃(t), ∂tũ} = {ṽCLnCL, ṽ}, {ṽCL, ṽ} ∈ Tη(t)M,(2.12)

from (2.11) we know

ṽ|Γ(t) = |∇u(Γ(t), t)|ṽCL.(2.13)

To ensure the volume preserving condition
∫
D(t)

udxdy = V, t ∈ [0, T ], we calculate

the first variation of an extended free energy F(η, λ) on manifold M×R for η(t) ∈ M
and a Lagrange multiplier λ(t)

F(η(t), λ(t)) = F(η(t))− λ(t)

(∫
D(t)

u(·, t) dxdy − V

)
.(2.14)

Then we have

d

ds

∣∣
s=t+

F(η̃(s), λ̃(s))

=
d

ds

∣∣
s=t+

F(η̃(t))− d

ds

∣∣
s=t+

λ̃(s)

(∫
D̃(s)

ũ(s) dx dy − V

)

=
d

ds

∣∣
s=t+

F(η̃(s))− λ(t)

∫
D(t)

ṽ dx dy − λ̃′(t)

(∫
D(t)

udxdy − V

)
,

(2.15)

where we used (2.12) and the Reynolds transport (2.3) in the last equality.
Now we calculate the first variation for a generic F(η̃(s)) with the energy density

function G(u,∇u). From (2.13) and the Reynolds transport theorem, we have

d

ds

∣∣
s=t+

∫
D̃(t)

G(ũ(x, y, s),∇ũ(x, y, s)) dxdy

(2.16)

=

∫
Γ(t)

G|ΓṽCL ds+

∫
D(t)

∂uGṽ + ∂∇uG · ∇ṽ dx dy

=

∫
Γ(t)

G|ΓṽCL ds+

∫
D(t)

(∂uG−∇ · (∂∇uG))ṽ dxdy +

∫
Γ(t)

ṽ(nCL · ∂∇uG) ds

=

∫
Γ(t)

[G+ |∇u|(nCL · ∂∇uG)]
∣∣
Γ
ṽCL ds+

∫
D(t)

(∂uG−∇ · (∂∇uG))ṽ dxdy.

Regard the contact line Γ and the capillary surface S as an open system. Denote the
two forces exerted by the droplet (the open system Γ and S) on the environment as

F := −∂uG+∇ · (∂∇uG), FY := −G− |∇u|(nCL · ∂∇uG).(2.17)

Then free energy dissipation can be expressed as the virtual work per unit time done
by the two virtual forces on the environment. For the case that G = γLG

√
1 + |∇u|2+

(γSL − γSG) + ρg u2

2 − λu, we know

F = −ρgu+ γLG∇ ·

(
∇u√

1 + |∇u|2

)
+ λ = −ρgu− γLGH + λ, FY = γLG(cos θCL − cos θY),

(2.18)D
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B318 YUAN GAO AND JIAN-GUO LIU

where H = −∇ · ( ∇u√
1+|∇u|2

) is the mean curvature. In this paper, we choose the

convention for the mean curvature notation H so that the sphere with radius R in
three dimensions has mean curvature H = 2

R .
With these two unbalanced forces F, FY , we know

d

ds

∣∣
s=t+

F(η̃(s), λ̃(s))

= −
∫
Γ(t)

FY ṽCL ds−
∫
D(t)

F ṽ dxdy − λ̃′(t)

(∫
D(t)

udx dy − V

)(2.19)

is a linear functional in terms of (ṽCL, ṽ, λ̃
′). Then after imposing the volume constraint∫

D(t)
udx dy = V , the energy dissipation is given by

d

ds

∣∣∣
s=t+

F(η̃(s), λ̃(s)) = −
∫
Γ(t)

FY ṽCL ds−
∫
D(t)

F ṽ dxdy =: Ḟ((ṽCL, ṽ); η).(2.20)

We will see below, since the Rayleigh dissipation functional only has quadratic dissi-
pation in terms of ṽCL and ṽ, in order to ensure the Rayleighian is bounded below, we
need enforce the volume constraint

∫
D(t)

udx dy = V . Otherwise, a relaxation model

by introducing a dissipation in terms of λ shall be used.

2.3. Onsager’s principle and PVIs for an obstacle problem. With the
specific driven energy F on manifold M and its first variation, we now start to derive
the droplets dynamics using Onsager’s principle with the obstacle as described below.

2.3.1. Friction damping for the motion of the droplet and the Rayleigh
dissipation function. From (2.20), the droplet experiences unbalanced forces
(−FY ,−F ) exerted by the environment. These two forces can be modeled as friction
forces done by the environment due to the motion of the droplet. First, the contact
line friction force density is given by −FY = −ξvCL, where ξ is the friction damping
coefficient per unit length for the contact line with the units of mass/(length · time).
Second, the friction force density on the capillary surface is given by −F = −ζvn,
where ζ is the friction damping coefficient per unit area for the capillary surface with
the units of mass/(area · time). These are the simplest linear response relations be-
tween the unbalanced forces (FY , F ) and the velocities (vCL, vn). If one also considers
the viscosity dissipation due to the fluids surrounding the capillary surface, we refer
to [20] for a nonlocal linear response relation.

Then we introduce the Rayleigh dissipation functional (in the unit of work per
unit time) given by [22]

Q =
ξ

2

∫
Γ

|vCL|2 ds+
ζ

2

∫
S

|vn|2 ds.(2.21)

With the geometric configurations, contact line Γ and capillary surface S, the variation
of free energy (2.4), and Rayleigh’s dissipation functional (2.21), in the next section,
we give detailed derivations of the governing equations using Onsager’s principle with
an obstacle.

2.3.2. Euler–Lagrange equations derived by Onsager’s principle. Recast
the Rayleigh dissipation functional as a functional of (vCL, v)

Q((vCL, v); η) =
ξ

2

∫
Γ

|vCL|2 ds+
ζ

2

∫
D

|v|2 1√
1 + |∇u|2

dxdy.(2.22)
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B319

Define the Rayleighian as

Ray((vCL, v); η) := Q((vCL, v); η) + Ḟ((vCL, v); η).(2.23)

Then minimizing Rayleighian w.r.t. (vCL, v) ∈ TηM

(vCL, ∂tu) = argmin(vCL,v)∈TηM Ray((vCL, v); η)(2.24)

yields the Euler–Lagrange equations. Indeed, notice the minimization (vCL, ∂tu) sat-
isfies

Ray((vCL + ε(ṽCL − vCL), ∂tu+ ε(ṽ − ∂tu))) ≥ Ray(vCL, ∂tu) for any ((ṽCL, ṽ)) ∈ TηM.
(2.25)

Thus taking ε → 0+ concludes the following PVI:

find η(t) = (Γ(t), u(t)) ∈ M, (vCL, ∂tu) ∈ TηM such that

ξvCL = FY on Γ(t),

ζ

∫
D(t)

∂tu√
1 + |∇u|2

(ṽ − ∂tu) dx dy ≥
∫
D(t)

F (ṽ − ∂tu) dx dy ∀ṽ ∈ Yη,∫
D(t)

udxdy = V,

(2.26)

where Yη := {v ∈ L2(D); v ≥ 0 on Bη}.
By taking ṽ = 0 or ṽ = 2∂tu in the third equation in (2.26), we have

ζ

∫
D(t)

|∂tu|2√
1 + |∇u|2

dxdy =

∫
D(t)

∂tuF dxdy.(2.27)

Thus plugging the velocity ṽCL = vCL and ṽ = ∂tu into (2.20), using (2.27) and the
second equation in (2.26), we conclude the energy dissipation relation

d

dt
F(η) = −2Q((vCL, ∂tu); η).(2.28)

2.3.3. Equivalent PVIs derived by Onsager’s principle w.r.t. virtual
displacement. Define a convex subsetKD := {v ∈ C1

c (D), v ≥ 0}. We first minimize
the Rayleighian defined in (2.23) with any ṽCL ∈ C(Γ), and the associated ṽ. This
gives the same equality ξvCL = FY for the moving contact line.

Next, we minimize the Rayleighian defined in (2.23) in a subset (0, ṽ) ⊂ TηM for
any ṽ ∈ KD. This, together with the equality for the moving contact line, gives a new
PVI

find η(t) = (Γ(t), u(t)) ∈ M, (vCL, ∂tu) ∈ TηM such that

ξvCL = FY on Γ(t),

ζ

∫
D(t)

∂tu√
1 + |∇u|2

(ṽ − u) dxdy ≥
∫
D(t)

F (ṽ − u) dxdy, ∀ṽ ∈ KD,∫
D(t)

udx dy = V.

(2.29)

Indeed, the derivation relies on the fact that for any virtual displacement ṽ ∈ KD,
u + ε(ṽ − u) = (1 − ε)u + εṽ is a curve on M with parameter 0 < ε < 1. Thus we
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B320 YUAN GAO AND JIAN-GUO LIU

know (0, ṽ − u) ∈ TηM and (0, ∂tu + ε(ṽ − u)) ∈ TηM since TηM is a convex cone.
So (2.29) is concluded after taking minimization for any (0, ∂tu+ ε(ṽ − u)) ∈ TηM

Ray((vCL, ∂tu+ ε(ṽ − u))) ≥ Ray(vCL, ∂tu)(2.30)

and letting ε → 0+.
By taking ṽ(·) = u(·, t)± s−t

2 ∂tu(·, t) and s → t+ in the third equation of (2.29),
we obtain (2.27) and thus we conclude the same energy dissipation relation (2.28).

2.3.4. Strong form of PVI. Using the coincidence set Bη, by taking different
ṽ, the second equation in (2.26) or in (2.29) can be recast as the same strong form.
We have the following proposition on the equivalence of (2.26) and (2.29).

Proposition 2.1. (i) Let (Γ(t), u(t)) be a smooth solution to the PVI (2.26).
Then (Γ(t), u(t)) ∈ M satisfies the Euler–Lagrange equation in the strong
form

(vCL, ∂tu) ∈ TηM such that

ξvCL = FY on Γ(t),{
ζ ∂tu√

1+|∇u|2
= F for (x, y) /∈ Bη or F ≥ 0

∂tu = 0 for (x, y) ∈ Bη and F < 0
in D(t),∫

D(t)

udxdy = V.

(2.31)

(ii) Let (Γ(t), u(t)) be a smooth solution to the PVI (2.29). Then (Γ(t), u(t)) ∈ M
satisfies the same Euler–Lagrange equation (2.31).

The proof of this proposition is standard and can be derived by considering dif-
ferent cases that appear in (2.31). From this proposition, we know two PVIs are
equivalent and our projection method will rely on PVI (2.29).

Briefly, we will alternately conduct the following two steps. In step (i), we solve
the equality governing equations

ξvCL = γLG(cos θCL − cos θY ) on Γ(t),

ζ
∂tu√

1 + |∇u|2
= −ρgu− γLGH + λ in D(t),

u = 0 on Γ(t),∫
D(t)

udxdy = V

(2.32)

with initial data η(0) = {Γ(0), u(x, y, 0)} and initial volume V . Then we do step
(ii), the projection to the manifold M. We will discuss the schemes, unconditional
stability, and convergence analysis in detail in section 3.

3. Numerical schemes, stability, and convergence analysis. In this sec-
tion, we first propose a numerical scheme for droplets dynamics with merging and
splitting, which are extensions of the first and second order schemes developed in [19]
for a single droplet without topological changes. To incorporate the splitting due to
an impermeable obstacle, we need to solve the PVI (2.29) instead of PDEs. Inspired
by a nonlinear version of the Trotter–Kato product formula, a projection method,
which efficiently splits the PDE solver and the obstacle constraint, will be adapted.
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B321

Then in section 3.2, we prove the unconditional stability of the projection method for
the moving contact line coupled with the motion by mean curvature with an obstacle.
In the stability analysis in Proposition 3.1, we focus on the key difficulties due to the
moving domain and the obstacle, and consider a droplet placed on a horizontal plane
without gravity and volume constraint. Finally, in section 3.3 we include the gravity
and the volume constraint and give a convergence analysis of the projection method
for droplets with a pinning contact line; see Theorem 3.3.

3.1. Numerical schemes based on explicit boundary moving and the
projection method. In this subsection, we present a numerical scheme for PVI
(2.29) describing the droplet dynamics with merging and splitting. First, we further
split the equality solver for (2.32) into two steps: (i) explicit boundary updates and (ii)
semi-implicit capillary surface updates. The unconditional stability for the explicit 1D
boundary updates is proved in [19], which efficiently decouples the computations of
the boundary evolution and the capillary surface updates. The semi-implicit capillary
surface updates without obstacles but with the volume constraint can be converted to
a standard elliptic solver at each step. Next, to enforce the impermeable obstacle, (iii)
we project the capillary surface to the manifold M. This step has an explicit formula
so also keeps the efficiency. Finally, to incorporate the phase transition information at
splitting points, (iv) we detect splitting points after a threshold and add new contact
line updates after that; see detailed explanations for the phase transition at emerged
contact lines in section 3.1.1. The current presentation for the proposed projection
method focuses only on 1D wetting domain. There are many well-developed numerical
methods for free boundary problems in high dimensions that can be adapted such as
the grid-based particle method [30], the immersed boundary method [31], the level-set
method [45], and the threshold dynamics method [42].

3.1.1. PVI for 2D droplet placed on a groove-textured and inclined
surface. For simplicity in presentation, we only describe numerical schemes for 2D
droplets. Hence we first use the PVI obtained in (2.29) to derive the governing PVI
for a 2D droplet placed on a groove-textured and inclined surface and explain the
phase transition happening at emerged contact lines after splitting.

Given a groove-textured impermeable surface described by a graph function w(x),
a droplet is then described by A := {(x, y); a ≤ x ≤ b, w(x) ≤ y ≤ u(x) + w(x)}.
Following the convention, we use the Cartesian coordinate system built on an inclined
plane with effective inclined angle θ0 such that −π

2 < θ0 < π
2 and (tan θ0)x is the new

x-axis; see Figure 1. Denote the height function as

h(x, t) := u(x, t) + w(x).

To be consistent with height function u in the last section, we choose the configuration
states of this droplet as the relative height function (capillary surface) u(x, t) ≥ 0 and
partially wetting domain a(t) ≤ x ≤ b(t) with free boundaries a(t), b(t). Consider the
manifold

M := {a, b, u(x); u(x) ≥ 0, u(x) ∈ C2
0 (a, b) ∩ L2(a, b)}.(3.1)

Consider the energy functional associated with the groove-textured surface

F(η) = γLG

∫ b

a

√
1 + (∂x(u+ w))2 dx+ (γSL − γSG)

∫ b

a

√
1 + (∂xw)2 dx

+ ρg

∫ b

a

∫ u+h0

h0

(y cos θ0 + x sin θ0) dy dx,

(3.2)D
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B322 YUAN GAO AND JIAN-GUO LIU

where ρ is the density of the liquid and g is the gravitational acceleration. Then we
have

G(u, x) =
√

1 + (∂x(u+ w))2 + σ
√

1 + (∂xw)2

+
ρg

γLG

(
u2 cos θ0

2
+ cos θ0uw + x sin θ0u

)
∂uG =

ρg

γLG

((u+ w) cos θ0 + x sin θ0) , ∂ux
G =

∂x(u+ w)√
1 + (∂x(u+ w))2

.

(3.3)

Remark 1. Let the density of gas outside the droplet be ρ0 = 0. We denote the
capillary coefficient as ς := ρg

γLG
> 0 and the capillary length as Lc := 1√

ς . For a

droplet with volume V , its equivalent length (characteristic length) L is defined as
V = 4π

3 L3 in three dimensions and V = πL2 in two dimensions. The Bond number

Bo := ( L
Lc

)2 = ςL2 shall be small enough to observe the capillary effect [12]. In
the inclined case, for a droplet with volume V in two dimensions, the effective Bond
number is Bo := ( L

Lc
)2 cos θ0 = ςL2 cos θ0. After the dimensionless argument, we use

new dimensionless quantities β, κ, V in the governing equation below.

Recall KD = {v ∈ C1
c (D), v ≥ 0}. Then by the same derivations as (2.29), we

have the governing PVI for the 2D droplet,

∫ b(t)

a(t)

(
β

∂th(x, t)√
1 + (∂xh)2

− ∂

∂x

(
∂xh√

1 + (∂xh)2

)
+ κ(h cos θ0 + x sin θ0)− λ(t)

)
(ṽ − u) dx ≥ 0

(3.4)

for any ṽ(x) ∈ KD(t),

h = u+ w, u ≥ 0 in D(t),

u(a(t), t) = u(b(t), t) = 0,

a′(t) = σ
√

1 + (∂xw)2 +
1 + ∂xh∂xw√
1 + (∂xh)2

∣∣∣
x=a

=
1

cos θ0a
(cos θa − cos θY ),

b′(t) = −σ
√

1 + (∂xw)2 − 1 + ∂xh∂xw√
1 + (∂xh)2

∣∣∣
x=b

= − 1

cos θ0b
(cos θb − cos θY ),∫ b(t)

a(t)

u(x, t) dx = V,

where θa, θb are two contact angles at a(t), b(t) and ∂xw|a = tan θ0a, ∂xh|a = tan(θ0a+
θa) and ∂xw|b = − tan θ0b and ∂xh|b = − tan(θ0b + θb); see Figure 1. It is easy to
check the steady state a′(t) = b′(t) = 0 recovers Young’s angle condition.

The PVI above is able to describe the merging and splitting of several drops.
However, whenever topological changes happen, (2.29) cannot describe the correct
phase transition at the splitting/merging points. For instance, when one droplet splits
into two droplets, physically, at the splitting domain D0 := {(x, y) ∈ D\Γ; u(x, t) =
0}, the interface between gas and liquid becomes the interface between gas and solid,
therefore new contact lines with competitions from three phases appear. Instead, the
dynamics governing by PVI (2.29) does not contain this phase transition information
but only leads to a nonphysical motion at the splitting domain D0, i.e., a droplet is
allowed to move along the boundary D0. We propose the following natural method
to incorporate the phase transition information into dynamics after splitting. (I)
We first detect when and where the phase transition happens by recording the new
generated contact lines. (II) Then surface energies from three phases take over the
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B323

dynamics posterior to splitting. That is to say, the generated two droplets have the
same governing equation with (2.29), respectively, and the volume of each droplet is
preserved over time; see Step 5 in the algorithm below.

3.1.2. First order numerical scheme: Explicit boundary updating with
the projection method.

Step 1. Explicit boundary updates. Compute the one-side approximated derivative
of hn at bn and an, denoted as (∂xh

n)N and (∂xh
n)0. Then by the dynamic boundary

condition in (3.4), we update an+1, bn+1 using

an+1 − an

∆t
= σ

√
1 + (∂xw)20 +

1 + (∂xh
n)0(∂xw)0√

1 + (∂xhn)20
,

bn+1 − bn

∆t
= −σ

√
1 + (∂xw)2N − 1 + (∂xh

n)N (∂xw)N√
1 + (∂xhn)2N

.

(3.5)

Step 2. Rescale hn from [an, bn] to [an+1, bn+1] with O(∆t2) accuracy using an
arbitrary Lagrangian–Eulerian discretization. For xn+1 ∈ [an+1, bn+1], denote the
map from moving grids at tn+1 to tn as

xn := an +
bn − an

bn+1 − an+1
(xn+1 − an+1) ∈ [an, bn].(3.6)

Define the rescaled solution for hn as

hn∗(xn+1) := hn(xn) + ∂xh
n(xn)(xn+1 − xn).(3.7)

It is easy to verify by using the Taylor expansion hn∗(xn+1) = hn(xn+1) + O(|xn −
xn+1|2); see [19, Appendix B]

Step 3. Capillary surface updates without impermeable obstacle constraint, but
with volume preserving constraint. Update h̃n+1 and λn+1 semi-implicitly.

β√
1 + (∂xhn∗)2

h̃n+1 − hn∗

∆t
(3.8)

=
∂

∂x

(
∂xh̃

n+1√
1 + (∂xhn∗)2

)
− κ(hn+1 cos θ0 + xn+1 sin θ0) + λn+1,

h̃n+1(an+1) = w(an+1), h̃n+1(bn+1) = w(bn+1),∫ bn+1

an+1

ũn+1(xn+1) dxn+1 = V,

where the independent variable is xn+1 ∈ (an+1, bn+1).
Step 4. Enforce the impermeable obstacle condition by the projection. Find hn+1

and λ satisfying {
hn+1 = max{h̃n+1 + λ,w},∫

D
hn+1 dxdy = V +

∫
D
w dxdy.

(3.9)

This is indeed project h̃ to the manifold M with the volume constraint V of the
droplet; see Lemma 3.2. (3.9) can be implemented using a bisection search for λ.
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B324 YUAN GAO AND JIAN-GUO LIU

Step 5. Phase transition and emerged triple points. Let ε > 0 be a threshold
parameter. If the length of splitting domain D0 > ε, then record two new endpoints
cn+1, dn+1 (emerged triple points). Regard the current profile hn+1 on (an+1, cn+1)
and (dn+1, bn+1) as two independent droplets and enforce the moving contact line
boundary conditions at these two emerged triple points cn+1, dn+1. The total volume
of these two droplet remains the same.

First order scheme for merging. The numerical scheme for the dynamics of two
independent droplets with endpoints an1 , b

n
1 (an2 , b

n
2 , resp.) are the same as those in

Steps 1–3. To detect the merging of two independent droplets, at each time stepping
tn, one also needs a threshold parameter ε > 0 such that we treat two droplets as one
big droplet if |an2 − bn1 | < ε.

The projection method for droplets dynamics above also works for the second
order scheme, which replaces Steps 1–3 by a midpoint scheme. We omit details and
refer to [19].

Remark 2. In Step 5, the additional moving contact line boundary condition at
the emerged triple points after splitting is just a numerical algorithm to realize the
phase transitions from two phases to three phases. To model this procedure in a
variational formulation is still an open question. In the following stability analysis,
convergence analysis, and accuracy check, we will not include Step 5 for the enforced
phase transition at emerged triple points.

3.2. Unconditional stability of the projection method for the moving
contact line and the motion by mean curvature. In this section, we show
the unconditional stability of the projection method for the moving contact line and
the motion by mean curvature. To focus on the key difficulties due to the moving
domain and the obstacle, we present an unconditional stability analysis for the case
the droplet is placed on a flat horizontal plane without the gravity and the volume
constraint. We will first present a projection method with a small modification for
the mean curvature term in (3.13).

3.2.1. A projection method for the moving contact line and the motion
by mean curvature. To focus on the moving contact line and the obstacle problem,
we first present a simplified projection method for droplets placed on a horizontal
plane without the gravity and the volume constraint.

Step 1. Explicit boundary updates. We update an+1, bn+1 using

an+1 − an

∆t
= σ +

1√
1 + (∂xhn)2

∣∣∣
an
,

bn+1 − bn

∆t
= −σ − 1√

1 + (∂xhn)2

∣∣∣
bn
.

(3.10)

Step 2. Rescale hn from [an, bn] to [an+1, bn+1] such that

hn∗(xn+1) := hn(xn) = U(Z), xn+1 ∈ [an+1, bn+1],(3.11)

where Z ∈ [0, 1] is a fixed domain variable satisfying

Z =
xn − an

bn − an
=

xn+1 − an+1

bn+1 − an+1
.(3.12)

Step 3. Capillary surface updates without impermeable obstacle constraint. Up-
date h̃n+1 implicitly,
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PROJECTION METHOD FOR CONTACT LINE DYNAMICS B325

β√
1 + (∂xh̃n+1)2

h̃n+1 − hn∗

∆t
=

∂

∂x

 ∂xh̃
n+1 + ∂xh

n∗√
1 + (∂xh̃n+1)2 +

√
1 + (∂xhn∗)2

 ,

h̃n+1(an+1) = 0, h̃n+1(bn+1) = 0,

(3.13)

where the independent variable is xn+1 ∈ (an+1, bn+1).
Step 4. Projection due to the impermeable obstacle.

hn+1 = max{h̃n+1, 0}.(3.14)

3.2.2. Unconditional stability for the projection method. Now we prove a
proposition for the unconditional stability of the simplified projection method above.

Proposition 3.1. For any T > 0, let ∆t be the time step and N = T
∆t . Suppose

hn, hn∗
, and h̃n are obtained from the above projection method. Then we have the

following stability estimates:
(i) for endpoints,

a0 + σT ≤ an ≤ a0 + (1 + σ)T, b0 − (1 + σ)T ≤ bn ≤ b0 − σT ;(3.15)

(ii) for the capillary surface,

max
1≤n≤N

∫ bn

an

√
1 + |∂xhn|2 dx+

β

∆t

N−1∑
n=0

∫ bn+1

an+1

|h̃n+1 − hn∗|2√
1 + (∂xh̃n+1)2

dx(3.16)

≤ 8T + 2

∫ b0

a0

√
1 + (∂xh0)2 dx.

Proof. First, we give the stability estimates for endpoints an, bn.
From (3.10), we know

σ∆t ≤ an+1 − an ≤ (σ + 1)∆t, −(σ + 1)∆t ≤ bn+1 − bn ≤ −σ∆t.(3.17)

Then telescoping shows (3.15).
Second, we give the stability estimates for h̃n.
From (3.18) and elementary calculations we list the following expressions in terms

of the Z variable:

hn(xn) = U(Z) = hn∗(xn+1), ∂xh
n(xn) =

∂ZU(Z)

bn − an
, ∂xh

n∗(xn+1) =
∂ZU(Z)

bn+1 − an+1
.

(3.18)

Multiplying (3.13) by v := h̃n+1 − hn∗ and integrating from an+1 to bn+1, we obtain

β

∆t

∫ bn+1

an+1

|h̃n+1 − hn∗|2√
1 + (∂xh̃n+1)2

dx+

∫ bn+1

an+1

|∂xh̃n+1|2 − |∂xhn∗|2√
1 + (∂xh̃n+1)2 +

√
1 + (∂xhn∗)2

dx = 0.

(3.19)

This gives

β

∆t

∫ bn+1

an+1

|h̃n+1 − hn∗|2√
1 + (∂xh̃n+1)2

dx+

∫ bn+1

an+1

(√
1 + (∂xh̃n+1)2 −

√
1 + (∂xhn∗)2

)
dx = 0.

(3.20)
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B326 YUAN GAO AND JIAN-GUO LIU

We now prove the following claim:∫ bn+1

an+1

√
1 + (∂xhn∗)2 dx−

∫ bn

an

√
1 + (∂xhn)2 dx ≤ 4∆t.(3.21)

Proof of the claim (3.21). First, from (3.17) and |σ| < 1, we know∣∣(bn+1 − an+1)− (bn − an)
∣∣ ≤ 4∆t.(3.22)

Second, by changing variables (3.18), we have

∫ bn+1

an+1

√
1 + (∂xhn∗)2 dx−

∫ bn

an

√
1 + (∂xhn)2 dx

=

∫ 1

0

√
(bn+1 − an+1)2 + (∂ZU(Z))

2
dZ −

∫ 1

0

√
(bn − an)2 + (∂ZU(Z))2 dZ

=

∫ 1

0

(bn+1 − an+1)2 − (bn − an)2√
(bn+1 − an+1)2 + (∂ZU(Z))

2
+
√
(bn − an)2 + (∂ZU(Z))2

dZ.

(3.23)

Therefore, from (3.22), we know∣∣∣∣∣
∫ bn+1

an+1

√
1 + (∂xhn∗)2 dx−

∫ bn

an

√
1 + (∂xhn)2 dx

∣∣∣∣∣(3.24)

≤
∣∣(bn+1 − an+1)2 − (bn − an)2

∣∣√
(bn+1 − an+1)2 +

√
(bn − an)2

≤ 4∆t.

From this claim, (3.20) becomes

β

∆t

∫ bn+1

an+1

|h̃n+1 − hn∗|2√
1 + (∂xh̃n+1)2

dx+

∫ bn+1

an+1

√
1 + (∂xh̃n+1)2 dx

−
∫ bn

an

√
1 + (∂xhn)2 dx ≤ 4∆t.

(3.25)

Third, we give the estimate for hn.
We prove by induction. For n = 0, from (3.25) and the Dirichlet boundary

condition we know h̃1 ∈ W 1,1(a1, b1). Thus

∂xh
1 = ∂x(h̃

1
+) = sgn(h̃1)∂xh̃

1 ∈ L1(a1, b1).(3.26)

This implies ∫ b1

a1

√
1 + |∂xh1|2 dx ≤

∫ b1

a1

√
1 + |∂xh̃1|2 dx.(3.27)

Then by induction, (3.25) becomes

β

∆t

∫ bn+1

an+1

|h̃n+1 − hn∗|2√
1 + (∂xh̃n+1)2

dx+

∫ bn+1

an+1

√
1 + (∂xhn+1)2 dx

−
∫ bn

an

√
1 + (∂xhn)2 dx ≤ 4∆t.

(3.28)

D
ow

nl
oa

de
d 

03
/2

9/
22

 to
 1

28
.2

10
.1

07
.2

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTION METHOD FOR CONTACT LINE DYNAMICS B327

By telescoping, we obtain∫ bn+1

an+1

√
1 + (∂xhn+1)2 dx ≤ 4T +

∫ b0

a0

√
1 + (∂xh0)2 dx(3.29)

and thus we conclude (3.16).

Remark 3. We remark that this proposition only holds for the 1D wetting domain
case because the estimates in Proposition 3.1 rely on the estimates for the normal
velocity of the contact points a(t), b(t). Indeed, the 2D contact line motion is definitely
a challenging problem in the geometric measure theory, even for a pure motion by
mean curvature without obstacles. With the volume preserving constraint, we refer to
[35] for a construction of global distributional solutions for mean curvature flow in high
dimensions, which used a discrete-time gradient flow approach following the classical
results developed in [2, 32]. For stability analysis for the contact line problem in high
dimensions, using a similar discrete-time gradient flow approach, [17] also constructed
a unique global solution starting from a star-shaped initial wetting domain but with
additional assumptions: (i) under a quasi-static assumption for the capillary surface;
(ii) replacing the surface energy by the Dirichlet energy. Their stability result states
that the wetting domain maintains its star-shape dynamically.

3.3. Convergence analysis of the projection method with pinning con-
tact lines. In this section, we give a convergence analysis for the projection method
under the pinning contact line assumption. On the one hand, the pinning (or stick-
ing) effect is an important observed phenomenon in most droplet wetting applications
[13, 38, 12]. On the other hand, the convergence analysis of the projection method
for the original moving contact line problem is very challenging. In the following
subsections, we first represent the PVI solution with pinning contact line as a non-
linear semigroup solution, then introduce the associated projection method and its
resolvent representation, and finally give the convergence analysis of the projection
method using a nonlinear version of the Trotter–Kato product formula.

3.3.1. Pinning contact line and the associated PVI. In order to work in a
Hilbert space X := L2(D), we clarify the following two assumptions on the Rayleigh
dissipation functional Q. Recall (2.22). First, we replace the dissipation due to the
motion of the capillary surface as ζ

∫
D
|v|2 dx dy so

Q̃ :=
ξ

2

∫
Γ

|vCL|2 ds+
ζ

2

∫
D

|v|2 dxdy.(3.30)

Second, we assume the friction coefficient ξ → +∞, which leads to the pinning bound-
ary condition vCL = 0. Then the PVI (2.29) becomes the following parabolic obstacle
problem in a fixed domain D. Denote KD := {u ∈ L2(D);u ≥ 0}.

Find u(t) ∈ KD ∩ C0(D), λ(t) ∈ R such that

ζ

∫
D

∂tu(ṽ − u) dxdy ≥
∫
D

F (ṽ − u) dxdy ∀ṽ ∈ KD ∩ C0(D),∫
D

udx dy = V,

(3.31)

where F = γLG∇ · ( ∇u√
1+|∇u|2

)− ρgu+ λ.
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B328 YUAN GAO AND JIAN-GUO LIU

3.3.2. The sum of two maximal monotone operators and the nonlinear
semigroup solution. To prove the convergence using the Trotter–Kato product for-
mula for two maximal monotone operators, we shall first convert the original gradient
flow problem with volume constraint to a problem in a linear subspace. To do this,
choose any fixed capillary profile u∗ ∈ C2

0 (D) satisfying
∫
D
u∗ dxdy = V, u∗ ≥ 0 as a

reference. We introduce a Hilbert space

X1 :=

{
v ∈ L2(D);

∫
D

v dxdy = 0

}
.(3.32)

Define a functional E from X1 to [0,+∞]

E(v) := F(v + u∗) = γLG

∫
D

√
1 + |∇(v + u∗)|2 dxdy + ρg

∫
D

(v + u∗)2

2
dxdy.

(3.33)

First, it is easy to verify that E is a proper, convex, and lower semicontinuous func-
tional on X1. Second, in X1, we compute the Gâteaux derivative of E: for any
ṽ ∈ X1,

d

dε

∣∣∣
ε=0

E(v + εṽ) =

〈
−γLG∇ ·

(
∇(v + u∗)√

1 + |∇(v + u∗)|2

)
+ ρg(v + u∗)− λ, ṽ

〉
(3.34)

for any constant λ ∈ R. Indeed, any constants are zero element in (X1)
′. Thus we

know the subdifferential of E in X1 is single-valued and agrees with the Gâteaux
derivative, denoted as

∇E(v) := −γLG∇ ·

(
∇(v + u∗)√

1 + |∇(v + u∗)|2

)
+ ρg(v + u∗)− λ.(3.35)

Since E is a proper, convex, and lower semicontinuous functional on X1, we
know ∇E is a maximal monotone operator which generates a nonlinear C0-semigroup,
symbolically denoted as S1(t) := e−t∇E ; cf. [5, 25]. The semigroup solution u(t) =
v(t) + u∗ satisfies the following governing equations:

ζ∂tu = γLG∇ ·

(
∇u√

1 + |∇u|2

)
− ρgu+ λ in D,

u = 0 on ∂D,∫
D

udxdy = V.

(3.36)

Notice the left-hand side in the first equation above is the vertical velocity instead of
the normal velocity of the capillary surface due to the special choice of Q̃ in (3.30).

For the obstacle problem (3.31), we need to introduce an indicator functional IK
for the convex subset

K := {v ∈ X1;u
∗ + v ≥ 0} ⊂ X1,(3.37)

where u∗ + K is indeed a convex cone. Denote A := ∇E, B := ∂IK . Since A +
B = ∇E + ∂IK is a maximal monotone operator in X1, A + B generates a strongly
continuous semigroup on [0,+∞) of contractions [29, 5], symbolically denoted as
S(t) := e−t(∇E+∂IK). For any u0 = v0 + u∗, v0 ∈ K, the unique mild solution to
(3.31) is given by [5]

u(t) = e−t(∇E+∂IK)u0 := u∗ + e−t(∇E+∂IK)v0.(3.38)
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3.3.3. Projection method and resolvent representation. To numerically
solve the obstacle problem (3.31) generated by A + B, the projection method (the
splitting method) is a natural and efficient method. Its convergence will be shown
below by using a nonlinear version of the Trotter–Kato product formula [25].

We first present the projection method for (3.31) in terms of the abstract operators
∇E and ∂IK as follows. As mentioned in the introduction (see (1.3)), we will see
this is exactly a splitting approximation of the minimizing movement method. For
τ := T

n , we use the projection method to construct an approximation uk of u(tk) with
tk = kτ, k = 0, 1, . . . , n, below.
Step (i) For uk = vk + u∗, vk ∈ K, find

ũk+1 = u∗ + argminv∈X1

(
E(v) +

∥v − vk∥2

2τ

)
,(3.39)

which is symbolically given by

ũk+1 = (I + τ∇E)−1uk.(3.40)

Step (ii) Find uk+1 and λ satisfying{
uk+1 = max{ũk+1 + λ, 0},∫

D
uk+1 dx dy = V.

(3.41)

Indeed, we have the following lemma characterizing the projection operator in Step
(ii).

Lemma 3.2. Let u∗ ≥ 0 be a reference profile satisfying
∫
D
u∗ dx = V. Given

ũk+1, denote ṽk+1 = ũk+1 − u∗. The following problems are equivalent:
(i) Find uk+1 = vk+1 + u∗ with vk+1 satisfying{

vk+1 ∈ K,
⟨ṽk+1 − vk+1, ϕ− vk+1⟩ ≤ 0 ∀ϕ ∈ K.

(3.42)

(ii) Find uk+1 = vk+1 + u∗ with vk+1 satisfying

ṽk+1 − vk+1 ∈ τ∂IK(vk+1) ∀τ > 0.(3.43)

(iii) Find uk+1 = vk+1 + u∗ with vk+1 satisfying vk+1 = ProjK(ũk+1 − u∗).
(iv) Find uk+1 and λ satisfying (3.41).

Proof. First, we prove (i) is equivalent to (ii).
The subdifferential of IK at v ∈ K in X1 is given by

f ∈ τ∂IK(v) ⇐⇒ 0 ≥ ⟨f, ϕ− v⟩ ∀ϕ ∈ K.(3.44)

Thus ∂IK is a convex cone and

ũk+1 − uk+1 = ṽk+1 − vk+1 ∈ τ∂IK(vk+1)

⇐⇒
{

vk+1 ∈ K,
⟨ṽk+1 − vk+1, ϕ− vk+1⟩ ≤ 0 ∀ϕ ∈ K.

(3.45)

Second, the equivalence between (i) and (iii) can be directly verified since{
vk+1 ∈ K,

⟨ṽk+1 − vk+1, ϕ− vk+1⟩ ≤ 0 ∀ϕ ∈ K
⇐⇒ vk+1 = ProjK(ṽk+1).(3.46)
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Third, we prove the equivalence between (iii) and (iv). First (iii) is equivalent to
finding the projection of ũk+1 in the set u∗ +K, i.e.,

uk+1 = u∗ + ProjK(ũk+1 − u∗) = Proju∗+K(ũk+1).(3.47)

Notice the following two sets are the same:

u∗ +K = KD ∩
{
u;

∫
udxdy = V

}
,(3.48)

where KD = {u ∈ L2(D);u ≥ 0}. Then (iii) is equivalent to finding the projection of
˜uk+1 in KD ∩ {u;

∫
udxdy = V }, i.e.,

(uk+1, λ∗) = arg min
u∈KD,λ∈R

L(u, λ),(3.49)

where λ is a Lagrange multiplier and

L(u, λ) :=
1

2
∥u− ũk+1∥2 − λ

(∫
D

udx dy − V

)
.

If (uk+1, λ∗) = argminu∈KD,λ∈R L(u, λ), then (uk+1, λ∗) satisfies

L(uk+1, λ∗) ≤ L(uk+1 + ε(ϕ̃− uk+1), λ∗ + εµ) ∀0 < ε < 1, ϕ̃ ∈ KD, µ ∈ R.(3.50)

This is equivalent to

0 ≤ ⟨(ϕ̃− uk+1), (uk+1 − ũk+1)⟩ − µ

(∫
D

uk+1 dx dy − V

)
− λ∗

∫
D

(ϕ̃− uk+1) dx dy +O(ε)

(3.51)

for any 0 < ε < 1, any ϕ̃ ∈ K̃, and any µ ∈ R.
Taking ε → 0+, from the arbitrariness of ϕ̃ ∈ K̃, µ ∈ R, we have

∫
D
uk+1 dxdy =

V. Thus (3.51) is equivalent to{ ∫
D
uk+1 dxdy = V,

⟨uk+1 − ũk+1, ϕ̃− uk+1⟩ − λ∗ ∫
D
(ϕ̃− uk+1) dxdy ≥ 0, ϕ̃ ∈ K̃.

(3.52)

Therefore, the equivalence of (3.52) with (3.41) can be directly concluded from [27,
p. 27], provided there exists solution (uk+1, λ∗) to (3.41). Define

f(λ) :=

∫
D

max{ũk+1 + λ, 0} dxdy − V,

which is an increasing function with respect to λ. It is easy to verify

f(0) ≥
∫
D

ũk+1 dx dy − V = 0

while for λm = −max(ũk+1) ≤ 0,

f(λm) = −V ≤ 0.

Thus there exists a unique λ∗ such that{
uk+1 = max{ũk+1 + λ∗, 0},∫

D
uk+1 dx dy = V,

(3.53)

which is exactly (3.41).
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Rewrite (3.43) as

vk+1 = (I + τ∂IK)−1(ṽk+1),(3.54)

and symbolically

uk+1 = (I + τ∂IK)−1ũk+1 := u∗ + (I + τ∂IK)−1(ṽk+1).(3.55)

In summary, we have

uk+1 = (I + τ∂IK)−1(I + τ∇E)−1uk.(3.56)

Recall A = ∇E, B = ∂IK . The corresponding resolvent operators of A and B are
denoted as JA

τ := (I+τ∇E)−1 and JB
τ := (I+τ∂IK)−1, respectively. The projection

method above can be recast as

uk+1 = JB
τ JA

τ uk.(3.57)

Next, to obtain an approximated solution ūτ (t) at any t ∈ [0, T ] for any time step
τ > 0, we use the piecewise constant interpolation from uk such that

ūτ (t) ≡ uk, t ∈ [kτ, (k + 1)τ),(3.58)

which is equivalent to

ūτ (t) := (JB
τ JA

τ )[
t
τ ]u0, t ∈ [0, T ].(3.59)

3.3.4. Convergence theorem. With all the preparations above, we apply a
nonlinear version of the Trotter–Kato product formula [25] to prove the convergence
for solving PVI (3.31) using the projection method.

Theorem 3.3 (convergence of the projection method). Let t ∈ [0, T ] and u(t)
given in (3.38) be a unique mild solution of (3.31). Let ūτ (t) given in (3.59) be the
numeric solution obtained from the projection method with time step τ . Then we have
the convergence

lim
τ→0

sup
t∈[0,T ]

∥ūτ (t)− u(t)∥ = 0.(3.60)

Proof. First, since A+B = ∂(E+IK) is a maximal monotone operator in u∗+X1,
A+B generates a strongly continuous semigroup on [0,+∞) of contractions, denoted
symbolically as S(t) := e−t∂(E+IK). For any u0 ∈ K, the mild solution to (1.1) is
given by

u(t) = e−t∂(E+IK)u0.(3.61)

Second, recall the resolvent of A and B are JA
τ = (I + τ∇E)−1 and JB

τ =
(I + τ∂IK)−1, respectively. We use the Trotter–Kato product formula [25] to prove

un(t) :=
(
JB

t
n
JA

t
n

)n
u0 → u(t), as n → +∞, uniformly for t ≥ 0.(3.62)

To see this, in [25] we take U1 := JA
t
n
, U2 := JB

t
n
. Then by [25, Example 2.3], we

know U1 are a nice E-family with index γ ≥ 2 and U2 are a nice IK-family with index
γ ≥ 2. Hence the condition (i) in [25, Theorem] holds, which gives the claim (3.62).
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Finally, for the projection scheme for t ∈ [0, T ] with time step τ = T
n , the piecewise

constant interpolation in [kτ, (k + 1)τ) is given by

ūτ (t) = (JB
τ JA

τ )[
t
τ ]u0, t ∈ [0, T ],(3.63)

where [a] is the integer part of real number a. Since τ [ tτ ] → t as τ → 0, we know

u

(
τ

[
t

τ

])
→ u(t)(3.64)

due to continuous semigroup property. Therefore we conclude

∥ūτ (t)− u(t)∥ ≤
∥∥∥∥(JB

τ JA
τ )[

t
τ ]u0 − u

(
τ

[
t

τ

])∥∥∥∥+ ∥∥∥∥u(τ [ tτ
])

− u(t)

∥∥∥∥→ 0(3.65)

as τ → 0 uniformly in t ∈ [0, T ].

4. Computations for merging and splitting of droplets. In this section,
we first give an accuracy check for the numerical scheme by constructing a projected
triple Gaussian capillary surface and then demonstrate two typical examples using
the projection scheme proposed in section 3.1. The first example is splitting of one
big droplet into two droplets when placed on an inclined groove-textured substrate.
The second example is merging of two droplets in a Utah teapot, which is compared
to independent dynamics of two droplets in the teapot separately.

4.1. Accuracy check with a projected triple Gaussian profile. In this
subsection, to check the order of accuracy of the projection method, we construct a
special example by a projected triple Gaussian function. We point out we only check
the first order accuracy of the projection method for solving PVI (3.31), i.e., Steps
1–4 in section 3.1.2. In other words, when checking the first order accuracy of the
projection method, we always regard the projected profile as a two-phase interface
without detecting the splitting point (Step 5 in section 3.1.2).

We use the initial endpoint b0 = 1.3 and a projected triple Gaussian as initial
capillary surface (green line in Figure 2)

u0(x) = max
{
2
(
e−(x+1)2 + e−16x2

+ e−(x−1)2 − e−(b0+1)2 − e−16b20 − e−(b0−1)2
)
, 0
}(4.1)

for x ∈ [−b0, b0].

0 0.05 0.1 0.15 0.2

time

0.5

0.6

0.7

0.8

0.9

co
n
ta

ct
 a

n
g
le

contact angle at a
contact angle at b

Fig. 2. The time evolution of the capillary surface u starting from a projected triple Gaussian
function (4.1), shown in green line. (Top) Capillary surface at equal time intervals are shown in
red line and the profile at final time T = 0.2 is shown in blue line. (Lower left) Zoom-in plot near
x = 0 showing u approaches zero at an early stage. (Lower right) Dynamic contact angle tracking
w.r.t. time.
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Table 1
Accuracy check: first order projection scheme in section 3.1.2 versus numerically computed

exact solution to (3.8) using time steps M = 1280 and spatial grid points N = 8 ∗M . Parameters:
T = 0.2, κ = 20, θY = π

3
, b0 = 1.3, time step ∆t = T

M
, M listed on the table, moving grid size

∆x =
b(t)−a(t)

N
, N = 8M . Absolute errors en for b, u, and θCL are computed by comparing with

exact solutions.

First order scheme
M Error of b Order Error of u Order Error of θCL Order

20 2.5961× 10−3 1.2592× 10−3 6.3988× 10−3

40 1.3571× 10−3 0.936 6.3389× 10−4 0.990 3.0201× 10−3 1.083
80 6.8157× 10−4 0.994 3.0961× 10−4 1.034 1.4511× 10−3 1.057
160 3.2538× 10−4 1.067 1.4555× 10−4 1.089 6.7734× 10−4 1.099
320 1.4151× 10−4 1.201 6.2874× 10−5 1.211 2.8999× 10−4 1.224

The physical parameters in (3.8) for the first order scheme in section 3.1.2 are

κ = 20, β = 2, σ = − cos
π

3
= −1

2
, w(x) ≡ 0,(4.2)

where θY = π
3 is the Young’s angle. Choose a final time T = 0.2. We numerically

compute an exact solution b(T ) = 1.238369607448268, θCL(T ) = 0.493880485215342
with uniform time steps ∆t = T

M , M = 1280 and uniform N = 8 ∗ M moving grid
points in [a(t), b(t)].

We show the accuracy check for the first order scheme in section 3.1.2 in Table
1. We use the same physical parameters and initial data in the first order schemes.
For several Mn listed in the tables, we take the time step as ∆t = T

Mn
and moving

grid size ∆x = b(t)−a(t)
Nn

with Nn = 8Mn. The absolute error en = |bMn − b(T )| (resp.,
en = |θMn

CL − θCL(T )|) between numeric solutions and the numerically computed exact
contact point b(T ) (resp., exact contact angle θCL(T )) are listed in the second column
(resp., sixth column) of Table 1. The maximal norm error en = ∥uMn − u(·, T )∥ℓ∞
between numeric solutions and the numerically computed exact capillary profile u
is listed in the fourth column of Table 1. The corresponding order of accuracy α =
ln(en/en+1)

ln(Mn+1/Mn)
is listed in the last column of the tables. For M = 320, the time evolution

of the capillary surface is shown in Figure 2 (top) with red lines at equal time intervals.
A zoom-in plot showing the capillary surface for the small bump profile at x = 0
approaches zero at the early stage of the evolution. We also track the time history of
two contact angles up to the final time T = 0.2; see Figure 2 (bottom).

4.2. Computations. Now we use the projection scheme in section 3.1 to sim-
ulate two challenging examples including the splitting and merging of droplets on
different impermeable substrates.

4.2.1. Example 1: Splitting of one droplet on an inclined groove-textured
substrate. We take a typical groove-textured substrate

w(x) = A(sin(kx) + cos(2kx))2, A = 0.1, k = 2.5.(4.3)

This is an impermeable obstacle where phase transitions happen when the droplet
touches the obstacle. Thus at the touching point, after one detects the phase transi-
tion, one droplet will split into two independent droplets with their own PVI (3.4).D
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To demonstrate those phenomena, we take the physical parameters as κ = 1, β = 0.1,
effective inclined angle θ0 = 0.3, and initial droplet as

h(x, 0) = 0.1(x− a(0))(b(0)− x) + w(a(0)) +
[w(b(0))− w(a(0))](x− a(0))

b(0)− a(0)
(4.4)

with initial endpoints a(0) = −2.1, b(0) = 3.1 as shown in Figure 3 using a green
line. The corresponding effective Bond number can be calculated as in Remark 1
with effective inclined angle θ0 = 0.3, Bo = 0.5712. We take final time as T = 1
with time step ∆t = 0.005 and use N = 200 moving grids uniformly in (a(t), b(t)) in
the projection scheme. With relative adhesion coefficient σ = −0.52, in Figure 3, we
show the dynamics of the droplet on groove-textured surface w(x) in (4.3) at equal
time intervals using thin red lines. The splitting time detected is Ts = 0.035 with
threshold ε = 0.075 and the two generated droplets keep moving independently until
the final time T = 1 with the final profiles shown in solid blue lines.

4.2.2. Example 2: Two droplets merged together in a Utah teapot. We
use a Utah teapot, which is well-known in computer graphics history, as a typical
inclined groove-textured substrate to demonstrate the merging of two droplets. The
Utah teapot can be constructed by several cubic Bézier curves [4] connecting following
10 points xi, yi, i = 1, . . . , 10, as listed in Table 2. For the bottom of the teapot, we
use (xi, yi) for i = 1, . . . , 4 and (xi, yi) for i = 4, . . . , 7. For the mouth of the teapot,

Fig. 3. Evolution and splitting of one droplet into two droplets on an inclined groove-textured
surface using the projection scheme in section 3.1. Parameters: κ = 1, β = 0.1, number of moving
grids N = 200, time step ∆t = 0.005, final time T = 1, splitting threshold ε = 0.075, initial drop
profile (green line) h(x, t) in (4.4) with initial endpoints a(0) = −2.1, b(0) = 3.1, Bond number
Bo = 0.5712., relative adhesion coefficient σ = −0.95, and the inclined substrate with effective angle
θ0 = 0.3 and (4.3). The evolution is shown using red lines at equal time intervals, and the final
profiles of two new droplets are shown in a blue line.

Table 2
Ten points used in Bézier curve fitting of geometry of a Utah teapot.

i 1 2 3 4 5 6 7 8 9 10

xi -2 − 4
3

− 2
3

0 2
3

4
3

2 2.655 2.846 4

yi 0.78 0 0 0 0 0 0.78 1.142 2.146 2.5
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we use (xi, yi) for i = 7, . . . , 10. Assume the inclined groove-textured substrate is
expressed by a parametric curve (x(ℓ), y(ℓ)). Let ℓ(x) be the inverse function of x(ℓ),
then w(x) = y(ℓ(x)) in (3.4).

Now we take the physical parameters as κ = 20, β = 1 and the relative adhesion
coefficient as σ = −0.78. Assume the initial Droplet 1 is

h(x, 0) = 4.5(x− a(0))(b(0)− x) + w(a(0)) +
[w(b(0))− w(a(0))](x− a(0))

b(0)− a(0)
(4.5)

with initial endpoints a(0) = 1.9, b(0) = 2.2, as shown in Figure 4 with a magenta
double-dotted line. Assume the initial Droplet 2 is

h(x, 0) = 7.8(x− a(0))(b(0)− x) + w(a(0)) +
[w(b(0))− w(a(0))](x− a(0))

b(0)− a(0)
(4.6)

Fig. 4. Evolution of two partially wetting droplets in the Utah teapot at equal time intervals
using the scheme in section 3.1. Parameters: number of moving grids in drop N = 1000, time step
∆t = 0.05, final time T = 12, κ = 20, β = 1, relative adhesion coefficient σ = −0.78, merging
threshold ε = 0.01, Bond number Bo = 0.0832 for Droplet 1 and Bo = 0.7861 for Droplet 2, initial
Droplet 1 profile (magenta double-dotted line) given in (4.5) with a(0) = 1.9, b(0) = 2.2 and initial
Droplet 2 profile (green double-dotted line) given in (4.6) with a(0) = 2.4, b(0) = 2.9. (Upper left)
Droplet 1 with slow capillary rise. (Upper right) Droplet 2 moves down fast due to gravitational
effect. (Bottom) Dynamics of two droplets: merge together and then move down as a new big
droplet with final profile shown in solid blue lines.
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with initial endpoints a(0) = 2.4, b(0) = 2.9 as shown in Figure 4 with a green double-
dotted line. The corresponding effective Bond number can be calculated according to
Remark 1 with effective inclined angle θ0 = 0.226π, Bo = 0.0832 for Droplet 1, and
Bo = 0.7861 for Droplet 2. In the numeric scheme, we use N = 1000 moving grids
uniformly in (a(t), b(t)) and the merging threshold ε = 0.01. We take the same final
time T = 12 with time step ∆t = 0.05. Without merging, the dynamics at equal time
intervals of Droplet 1 and Droplet 2 are shown separately as comparisons in Figure
4 (top) with the final profile at T = 12 using a solid magenta line for Droplet 1 and
a solid green line for Droplet 2. The small magenta Droplet 1 (top left) shows slow
capillary rise, while the large green Droplet 2 (top right) moves down fast due to
the gravitational effect. However, with the same parameters and same initial profiles
(double-dotted lines), the dynamics at equal time intervals for the two droplets placed
together in the Utah teapot are shown in Figure 4 (bottom). The two droplets will
merge together at T = 3 with the solid magenta/green lines for Droplet 1/Droplet
2 and then they continue to move down as a new big droplet as shown in thin blue
lines. The final profile of the new big droplet at T = 12 is shown in a solid blue
line.
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