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WEAK SOLUTION OF A CONTINUUM MODEL FOR VICINAL
SURFACE IN THE ATTACHMENT-DETACHMENT-LIMITED

REGIME∗
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Abstract. We study in this work a continuum model derived from a one-dimensional attachment-
detachment-limited type step flow on a vicinal surface, ut = −u2(u3)hhhh, where u, considered as a
function of step height h, is the step slope of the surface. We formulate a notion of a weak solution
to this continuum model and prove the existence of a global weak solution, which is positive almost
everywhere. We also study the long time behavior of the weak solution and prove it converges to a
constant solution as time goes to infinity. The space-time Hölder continuity of the weak solution is
also discussed as a byproduct.
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1. Introduction. During the heteroepitaxial growth of thin films, the evolution
of the crystal surfaces involves various structures. Below the roughening transition
temperature, the crystal surface can be well characterized as steps and terraces, to-
gether with adatoms on the terraces. Adatoms detach from steps, diffuse on the
terraces until they meet one of the steps and reattach again, which leads to a step
flow on the crystal surface. The evolution of individual steps is described mathemat-
ically by the Burton–Cabrera–Frank (BCF) type models [3]; see [5, 6] for extensions
to include elastic effects. Denote the step locations at time t by xi(t), i ∈ Z, where i
is the index of the steps. Denote the height of each step as a. For a one-dimensional
vicinal surface (i.e., monotone surface), if we do not consider the deposition flux, the
original BCF type model, after nondimensionalization, can be written as (we set some
physical constants to be 1 for simplicity)

(1.1) ẋi =
D

ka2

(
µi+1 − µi

xi+1 − xi + D
k

− µi − µi−1
xi − xi−1 + D

k

)
for 1 ≤ i ≤ N,

where D is the terrace diffusion constant, k is the hopping rate of an adatom to the
upward or downward step, and µ is the chemical potential whose expression ranges
under different assumption. Often two limiting cases of the classical BCF type model
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1706 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

(1.1) were considered. See [26, 16] for the diffusion-limited (DL) case and see [13, 1]
for the attachment-detachment-limited (ADL) case.

In the DL regime, the dominated dynamics is diffusion across the terraces, i.e.,
D
k << xi+1 − xi, so the step-flow ODE becomes

(1.2) ẋi =
D

ka2

(
µi+1 − µi
xi+1 − xi

− µi − µi−1
xi − xi−1

)
for 1 ≤ i ≤ N.

In the ADL regime, the diffusion across the terraces is fast, i.e., Dk >> xi+1− xi,
so the dominated processes are the exchange of atoms at steps edges, i.e., attachment
and detachment. The step-flow ODE in the ADL regime becomes

(1.3) ẋi =
1

a2
(
µi+1 − 2µi + µi−1

)
for 1 ≤ i ≤ N.

Those models are widely used for crystal growth of thin films on substrates; see
many scientific and engineering applications in the books [23, 28, 32]. As many of
the films’ properties and their performance originate in their growth processes, under-
standing and mastering thin film growth is one of the major challenges of materials
science.

Although these mesoscopic models provide details of a discrete nature, continuum
approximation for the discrete models is also used to analyze the step motion. They
involve fewer variables than discrete models so they can reveal the leading physics
structure and are easier to use for numerical simulation. Many interesting contin-
uum models can be found in the literature on surface morphological evolution; see
[22, 25, 7, 29, 30, 24, 20, 4, 10] for one-dimensional models and [19, 31] for two-
dimensional models. The study of the relation between the discrete ODE models and
the corresponding continuum PDE has raised lots of interest. Driven by this goal, it
is important to understand the well-posedness and properties of the solutions to those
continuum models.

For a general surface with peaks and valleys, the analysis of step motion on the
level of continuous PDEs is complicated so we focus on a simpler situation in this
work: a monotone one-dimensional step train, known as the vicinal surface in the
physics literature. In this case, Ozdemir and Zangwill [22] and Al Hajj Shehadeh,
Kohn, and Weare [1] realized using the step slope as a new variable is a convenient
way to derive the continuum PDE model

(1.4) ut = −u2(u3)hhhh,

where u, considered as a function of step height h, is the step slope of the surface. We
validate this continuum model by formulating a notion of a weak solution. Then we
prove the existence of such a weak solution. The weak solution is also persistent, i.e.,
it is positive (or negative) almost everywhere if nonnegative (or nonpositive) initial
data are assumed.

The starting point of this PDE is the one-dimensional ADL type models (1.3).
To simplify the analysis, we will consider a periodic train of steps in this work, i.e.,
we assume that

(1.5) xi+N (t)− xi(t) = L ∀ i ∈ Z, ∀ t ≥ 0,

where L is a fixed length of the period. Thus, only the step locations in one period
{xi(t), i = 1, . . . , N} are considered as degrees of freedom. Since the vicinal surface is
very large in practice from the microscopic point of view, this is a good approximation.
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Fig. 1. An example of step configurations with periodic boundary condition.

We set the height of each step as a = 1
N , and thus the total height changes across the

N steps in one period are given by 1. This choice is suitable for the continuum limit
N →∞. See Figure 1 for an example of step train in one period.

The general form of the (free) energy functional due to step interaction is1

(1.6) FN = a

N−1∑
i=0

f

(
xi+1 − xi

a

)
,

where f reflects the physics of step interaction. Following the convention in focusing
on entropic and elastic-dipoles interaction [21, 14], we choose f(r) = 1

2r2 . Hence each
step evolves by (1.3) with chemical potential µi defined as the first variation of the
step interaction energy

(1.7) FN =
1

2

N−1∑
i=0

a3

(xi+1 − xi)2

with respect to xi. That is,

(1.8) µi =
1

a

∂FN
∂xi

=
a2

(xi+1 − xi)3
− a2

(xi − xi−1)3
for 1 ≤ i ≤ N.

From the periodicity of xi in (1.5), it is easy to see the periodicity of µ such that
µi = µi+N .

When the step height a → 0 or, equivalently, the number of steps in one period
N → ∞, from the viewpoint of surface slope, Al Hajj Shehadeh, Kohn, and Weare
[1] and Margetis and Nakamura [20] studied the continuum model (1.4); see also [22]
for physical derivation in the general case. We recall their ideas in our periodic setup.
Denote the step slopes as

ui(t) =
a

xi+1(t)− xi(t)
for 1 ≤ i ≤ N.

The periodicity of xi in (1.5) directly implies the periodicity of ui, i.e., ui = ui+N .
Then by straightforward calculation, we have the ODE for slopes

(1.9) u̇i = − 1

a4
u2i

[
(u3i+2−2u3i+1 +u3i )−2(u3i+1−2u3i +u3i−1) + (u3i −2u3i−1 +u3i−2)

]
.

1In this work, we neglect long-range elastic interactions between the steps in the model; related
models with long-range elastic interactions are briefly discussed later in the introduction.
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1708 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

Under the periodic setup, when considering step slope u as a function of h in the
continuum model, u has period 1. Keep in mind the height of each step xi is hi = ia.
It is natural to anticipate that as N →∞, the solution of the slope ODE (1.9) should
converge to the solution u(h, t) of continuum model (1.4), which is 1-periodic with
respect to step height h.

By different methods, [1] and [20] separately studied the self-similar solution of
ODE (1.9) and PDE (1.4). For monotone initial data, i.e., x1(0) < x2(0) < · · · <
xN (0), [1] proved the steps do not collide and the global-in-time solution to ODE
(1.9) (as well as ODE (1.3)) was obtained in their paper. By introducing a similarity
variable, [1] first discovered that the self-similar solution is a critical point of a “simi-
larity energy” for both discrete and continuum systems. Then they rigorously proved
the continuum limit of a self-similar solution and obtained the convergence rate for
the self-similar solution.

However, as far as we know, the global-in-time validation of the time-dependent
continuum limit model (1.4) is still an open question as stated in [15]. In fact, it is not
even known whether (1.4) has a well-defined, unique solution. Although the positivity
of the solution to continuum model (1.4) corresponds to the noncollision of steps in
discrete model, which was proved in [1], even a “formal proof” of a positive global
weak solution in the time-dependent continuous setting has not been established.

Our goal is to formulate a notion of weak solution and prove the existence of a
global weak solution. We also prove the almost everywhere positivity of the solution,
which might help the study of global convergence of discrete model (1.3) to its con-
tinuum limit (1.4) in the future. Moreover, we study the long time behavior of weak
solutions and prove that all weak solutions converge to a constant as time goes to
infinity. The space-time Hölder continuity of the solution is also obtained.

One of the key structures of the model is that it possesses the following two
Lyapunov functions:

(1.10) F (u) :=
1

2

∫ 1

0

u2 dh

and

(1.11) E(u) :=

∫ 1

0

1

6
[(u3)hh]2 dh.

Then we have

δF (u)

δu
= u,

δE(u)

δu
= u2(u3)hhhh,

and (1.4) can be recast as

(1.12) ut = −δE(u)

δu
= −u2∂hhhh

(
u2
δF (u)

δu

)
.

Since the homogeneous degree of E(u) is 6, one has

6E(u) =

∫ 1

0

u
δE(u)

δu
dh.

Then by (1.12), we obtain

(1.13)
dF (u)

dt
+ 6E(u) =

∫ 1

0

u

(
ut +

δE(u)

δu

)
dh = 0.
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1709

Notice that

(1.14)
dE(u)

dt
=

∫ 1

0

δE(u)

δu
ut dh = −

∫ 1

0

u2t dh ≤ 0.

Therefore, we also have the following dissipation structures:

(1.15)
dE(u)

dt
+D(u) = 0,

where D :=
∫ 1

0
[u2(u3)hhhh]2 dh. From (1.15) and (1.13), for any T > 0, we obtain

6TE(u(T, ·)) ≤ 6

∫ T

0

E(u(t, ·)) dt ≤ F (u(0, ·))− F (u(T, ·)),

which leads to the algebraic decay

(1.16) E(u(T, ·)) ≤ F (u(0, ·))
6T

for any T > 0.

The free energy F is consistent with the discrete energy FN defined in (1.7) and
E was first introduced in the work [1]. We call it energy dissipation rate E due to
its physical meaning (1.13), i.e., E gives the rate at which the step free energy F is
dissipated up to a constant. This relation between E and F is important for proving
the positivity, existence, and long time behavior of the weak solution to (1.4).

On the contrary, if we also had E(u) ≤ cD(u) (which does not hold here), then

(1.15) would imply dE(u)
dt ≤ −cE(u), i.e., E is bounded by the dissipation rate of

itself. This kind of structure would lead to an exponential decay rate, which is widely
used for convergence of a weak solution to its steady state; see, e.g., [27]. While we
do not have such a classical exponential decay structure, the two related dissipation
structures (1.15), (1.13) are good enough to get an algebraic decay (1.16) and obtain
the long time behavior of a weak solution; see section 3.

We also give a formal observation for the conservation law of 1
u below. It gives the

intuition to prove the positivity of a weak solution to the regularized problem, which
leads to the almost everywhere positivity of a weak solution to the original problem;
see Theorem 2.2. Multiplying (1.4) by 1

u2 gives

(1.17)
d

dt

∫ 1

0

1

u
dh =

∫ 1

0

(u3)hhhh dh = 0.

Hence we know
∫ 1

0
1
u dh is a constant of motion for the classical solution.

One of the main difficulties for PDE (1.4) is that it becomes degenerate-parabolic
whenever u approaches 0. As it is not known whether solutions have singularities on
the set {u = 0}, we adopt a regularization method, ε-system, from the work of Bernis
and Friedman [2]. First, we define the weak solution in the spirit of [2]. Then we study
the ε-system and obtain a unique global weak solution to the ε-system. The positive
lower bound of the solution to the ε-system is important in the proof of existence
of an almost everywhere positive weak solution to PDE (1.4). Observing the energy
dissipation rate E defined in (1.11) and the corresponding variational structure, we
will make the natural choice of using u3 as the variable. Yet another difficulty arises
since we do not have a lower-order estimate for u3 after regularization. Therefore we
need to adopt the a priori assumption method and verify the a priori assumption by
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1710 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

calculating the positive lower bound of solutions to the ε-system. Finally, we prove the
limit of the solution to the ε-system is the weak solution to (1.4). When it comes to
establishing two energy-dissipation inequalities for the weak solution u, singularities
on set {u = 0} cause problems too. Hence we also need to take advantage of the
ε-system, which allows us to avoid the difficulty due to singularities, to obtain the
two energy-dissipation inequalities.

While we prove the existence, the uniqueness of the weak solution is still an open
question. Since we consider a degenerate problem not in divergence form, we have not
been able to show the uniqueness after the solution touches zero, nor can we obtain
any kind of conservation laws rigorously.

One of the closely related models is the continuum model in the DL regime (we
set some physical constants to be 1 for simplicity)

(1.18) ht =

(
−aH(hx)−

(
a2

hx
+ 3hx

)
hxx

)
xx

,

which was first proposed by Xiang [29], who considered the DL type model (1.2) with
a different chemical potential µi. More specifically, an additional contribution from
global step interaction is included besides the local terms in the free energy (1.6),

(1.19) FN = a

N−1∑
i=0

f1

(
xi+1 − xi

a

)
+ a2

N−1∑
i=0

N−1∑
j=0,j 6=i

f2

(
xj − xi
a

)
,

with f1(r) = 1
2r2 and f2(r) = a2 ln |r|. While the free energy FN is slightly different

from that of [29], where the first term f1 is also treated as a global interaction, the
formal continuum limit PDEs are the same. As argued in [30], the second term f2
comes from the misfit elastic interaction between steps and is hence higher-order in a
compared with the broken bond elastic interaction between steps which contributes
to the first term. Note that (1.18) is a PDE for the height of the surface as a function
of the position and the first two terms involve the small parameter a. We include in
the appendix some alternative forms of the PDE (1.4). In particular, when formally
ignoring these terms with small a-dependent amplitude, (1.18) becomes

(1.20) ht = −3

2

(
(hx)2

)
xxx

,

which is parallel to (A.12) in our case. For the DL type PDE (1.20), a fully rigorous
understanding is available in [15, 11]. Kohn [15] pointed out that a rigorous under-
standing for the evolution of a global solution to ADL type model (A.12) (as well as
PDE (1.4)) is still open because the mobility 1

hx
in (A.12) (which equals 1 in the DL

model) brings more difficulties.
Recently, Dal Maso, Fonseca, and Leoni [4] studied the global weak solution to

(1.18) by setting a = 1 in the equation, i.e.,

(1.21) ht =

(
−H(hx)−

(
3hx +

1

hx

)
hxx

)
xx

.

The work [4] validated (1.21) analytically by verifying the almost everywhere positivity
of hx. Moreover, Fonseca, Leoni, and Lu [9] obtained the existence and uniqueness of
the weak solution to (1.21). However, also because the mobility 1

hx
(which equals 1

in the DL model) appears when the PDE is rewritten as h-equation (A.12), there is
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1711

little chance to recast it into an abstract evolution equation with maximal monotone
operator in reflexive Banach space by choosing other variables, which is the key to the
method in [9]. It is very challenging to apply the classical maximal monotone method
to a nonreflexive Banach space, so we use different techniques following Bernis and
Friedman [2] and the uniqueness is still open.

The remainder of this paper is arranged as follows. After defining the weak so-
lution, section 2 is devoted to proving the main theorem, Theorem 2.2. In section
2.1, we establish the well-posedness of the regularized ε-system and study its prop-
erties. In section 2.2, we study the existence of a global weak solution to PDE (1.4)
and prove it is positive almost everywhere. In section 2.3, we obtain the space-time
Hölder continuity of the weak solution. Section 3 considers the long time behavior of
the weak solution. The paper ends with an appendix, which includes a few alternative
formulations of the PDEs based on physical variables other than the slope.

2. Global weak solution. In this section, we start to prove the global existence
and almost everywhere positivity of weak solutions to PDE (1.4). In the following,
with standard notation for Sobolev spaces, denote

(2.1) Hm
per([0, 1]) := {u(h) ∈ Hm(R); u(h+ 1) = u(h) a.e. h ∈ R},

and when m = 0, we denote L2
per([0, 1]). We will study the continuum problem (1.4)

in periodic setup.
Although we can prove the measure of {(t, x);u(t, x) = 0} is zero, we still have no

information for it. To avoid the difficulty when u = 0, we use a regularized method
introduced by Bernis and Friedman [2]. Since we do not know the situation in set
{(t, x);u(t, x) = 0}, we need to define a set

(2.2) PT := (0, T )× (0, 1)\{(t, h);u(t, h) = 0}.

As a consequence of (2.8) and time-space Hölder regularity estimates for u3 in
Proposition 2.9, we know that PT is an open set and we can define a distribution
on PT . Recall the definition E in (1.11). First we give the definition of a weak
solution to PDE (1.4).

Definition 2.1. For any T > 0, we call a nonnegative function u(t, h) with reg-
ularities

(2.3) u3 ∈ L∞([0, T ];H2
per([0, 1])), u2(u3)hhhh ∈ L2(PT ),

(2.4) ut ∈ L2([0, T ];L2
per([0, 1])), u3 ∈ C([0, T ];H1

per([0, 1])),

a weak solution to PDE (1.4) with initial data u0 if
(i) for any function φ ∈ C∞([0, T ] × R), which is 1-periodic with respect to h, u

satisfies

(2.5)

∫ T

0

∫ 1

0

φut dhdt+

∫ ∫
PT

φu2(u3)hhhh dhdt = 0;

(ii) the following first energy-dissipation inequality holds:

(2.6) E(u(T, ·)) +

∫ ∫
PT

(u2(u3)hhhh)2 dhdt ≤ E(u(0, ·));
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1712 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

(iii) the following second energy-dissipation inequality holds:

(2.7) F (u(T, ·)) + 6

∫ T

0

E(u(t, ·)) dt ≤ F (u(0, ·)).

We now state the main result, the global existence of a weak solution to (1.4), as
follows.

Theorem 2.2. For any T > 0, assume initial data u30 ∈ H2
per([0, 1]),

∫ 1

0
1
u0

dh =
m0 < +∞, and u0 ≥ 0. Then there exists a global nonnegative weak solution to PDE
(1.4) with initial data u0. Besides, we have

(2.8) u(t, h) > 0 for a.e. (t, h) ∈ [0, T ]× [0, 1].

We will use an approximation method to obtain the global existence theorem, The-
orem 2.2. This method is proposed by [2] to study a nonlinear degenerate parabolic
equation.

2.1. Global existence for a regularized problem and some properties.
Consider the following regularized problem in one period h ∈ [0, 1]:

(2.9)

 uεt = − u4ε
ε+ u2ε

(u3ε)hhhh for t ∈ [0, T ], h ∈ [0, 1];

uε(0, h) = u0 + ε
1
3 for h ∈ [0, 1].

We point out that the added perturbation term is important to the positivity of the
global weak solution.

First we give the definition of a weak solution to regularized problem (2.9).

Definition 2.3. For any fixed ε > 0, T > 0, we call a nonnegative function
uε(t, h) with regularities

(2.10) u3ε ∈ L∞([0, T ];H2
per([0, 1])),

u3ε√
ε+ u2ε

(u3ε)hhhh ∈ L2(0, T ;L2
per([0, 1])),

(2.11) uεt ∈ L2([0, T ];L2
per([0, 1])), u3ε ∈ C([0, T ];H1

per([0, 1])),

a weak solution to regularized problem (2.9) if
(i) for any function φ ∈ C∞([0, T ]× [0, 1]), uε satisfies

(2.12)

∫ T

0

∫ 1

0

φuεt dhdt+

∫ T

0

∫ 1

0

φ
u4ε

ε+ u2ε
(u3ε)hhhh dhdt = 0;

(ii) the following first energy-dissipation equality holds:

(2.13) E(uε(T, ·)) +

∫ T

0

∫ 1

0

[
u3ε√
ε+ u2ε

(u3ε)hhhh

]2
dhdt = E(uε(0, ·));

(iii) the following second energy-dissipation equality holds:

(2.14) Fε(uε(T, ·)) + 6

∫ T

0

E(uε(t, ·)) dt = Fε(uε(0, ·)),

where Fε(uε) :=
∫ 1

0
ε ln |uε|dh+ F (uε) is a perturbed version of F .
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1713

Now we introduce two lemmas which will be used later.

Lemma 2.4. For any 1-periodic function u, we have the following relation:

(2.15)

∫ 1

0

(
(u3)hh

)2
dh = 9

∫ 1

0

u4(uhh)2 dh.

Proof. Notice that

((u3)hh)2 =
[(

3u2uh
)
h

]2
=
[
6uu2h + 3u2uhh

]2
= 9u4u2hh + 36u2u4h + 36u3u2huhh

= 9u4u2hh + 36u2u4h + 12u3(u3h)h

= 9u4u2hh + 12(u3u3h)h.

Integrating from 0 to 1, we obtain (2.15).

Lemma 2.5. For any function u(h) such that uhh ∈ L2([0, 1]), assume u achieves
its minimal value umin at h?, i.e., umin = u(h?). Then we have

(2.16) u(h)− umin ≤
2

3
‖uhh‖L2([0,1])|h− h?|

3
2 for any h ∈ [0, 1].

Proof. Since uhh ∈ L2([0, 1]), uh is continuous. Hence by umin = u(h?), we have
uh(h?) = 0 and

(2.17) |uh(h)| =

∣∣∣∣∣
∫ h

h?
uhh(s) ds

∣∣∣∣∣ ≤ |h− h?| 12 ‖uhh‖L2([0,1]) for any h ∈ [0, 1].

Hence we have

|u(h)− umin| ≤
∫ h

h?
|s− h?| 12 ‖uhh‖L2([0,1]) ds

≤ 2

3
|h− h?| 32 ‖uhh‖L2([0,1]).

Next, we study the properties of the regularized problem. From now on, we
denote C(‖u30‖H2) as a constant that only depends on ‖u30‖H2([0,1]). The existence
and uniqueness of the solution to the regularized problem (2.9) is stated below.

Proposition 2.6. Assume u30 ∈ H2
per([0, 1]),

∫ 1

0
1
u0

dh = m0 < +∞, and u0 ≥ 0.
Then for any T > 0, there exists uε being the unique positive weak solution to the
regularized system (2.9) and

u3ε ∈ L∞([0, T ];H2
per([0, 1])) ∩ C([0, T ];H1

per([0, 1]))

satisfies the following estimates uniformly in ε:

(2.18)

‖u3ε‖L∞([0,T ];H2([0,1])) ≤ C(‖u30‖H2),∥∥∥∥∥ u3ε√
ε+ u2ε

(u3ε)hhhh

∥∥∥∥∥
L2([0,T ];L2([0,1]))

≤ C(‖u30‖H2),

(2.19) ‖uεt‖L2([0,T ];L2
per([0,1]))

≤ C(‖u30‖H2).

Moreover, uε has the following properties:
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1714 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

(i) uε has a positive lower bound

(2.20) uε(t, h) ≥ 1

18
1
3E

1
3
0 Cm0

ε for any t ∈ [0, T ], h ∈ [0, 1],

where Cm0 =
∫ 1

0
1
u0

dh+ 1 and E0 =
∫ 1

0
1
6 [(u30)hh]2 dh is the initial energy.

(ii) uε satisfies the Hölder continuity properties, i.e.,

(2.21) u3ε(t, ·) ∈ C
1
2 ([0, 1]) for any t ∈ [0, T ].

(iii) For any δ > 0,

(2.22) µ{(t, h);uε(t, h) < δ} ≤ Cm0
Tδ,

where µ{A} is the Lebesgue measure of set A.

Proof. For a fixed ε > 0, in order to get the solution to regularized problem (2.9),
first we need some a priori estimates for uε, the existence of which will be discussed

later. Denote Cm0
:=
∫ 1

0
1
u0

dh+1, and umin is the minimal value of uε in [0, T ]×[0, 1].
For any t ∈ [0, T ], denote um(t) as the minimal value of uε(t, h) for h ∈ [0, 1]. Assume
uε achieves its minimal value at t?, h?, i.e., umin = uε(t

?, h?). Denote

E0 :=

∫ 1

0

1

6

[
(u30)hh

]2
dh ≤ C

(
‖u30‖H2

)
.

In Step 1, we first introduce some a priori estimates under the a priori assumption

(2.23) uε(t, h) ≥ umin ≥ ε
4
3 for any t ∈ [0, T ], h ∈ [0, 1].

In Step 2, we prove the lower bound of uε depending on ε, which is the property (i),
and verify the a priori assumption (2.23). After that, the proof for existence of uε
is standard. Here, let us sketch the modified method from [18]. We can first modify
(2.9) properly using the standard mollifier Jδ such that the right-hand side is locally
Lipschitz continuous in Banach space L∞([0, 1]), so that we can apply the Picard
theorem in abstract Banach space. Hence by [18, Theorem 3.1], it has a unique local
solution uεδ. Then by the a priori estimates in Steps 1 and 2, we can get uniform
regularity estimates, extend the maximal existence time for uεδ, and finally obtain
the limit of uεδ, uε, as a weak solution to the regularized problem (2.9). In Step 3, we
prove that the solution obtained above is unique. In Step 4, we study the properties
(ii) and (iii).

Remark 2.7. For the a priori assumption method, to be more transparent, we
claim uε ≥ C?ε for any t ∈ [0, T ], where C? = 1

18
1
3E

1
3
0 Cm0

. If not, there exists t? ∈

(0, T ) such that
uε(t, h) ≥ C?ε for any t ∈ [0, t?], h ∈ [0, 1].

Due to the continuity of uε, there exists t?? ∈ (t?, T ) such that

uε(t, h) ≥ ε 4
3 for any t ∈ (t?, t??), h ∈ [0, 1],

and there exists h̃ ∈ [0, 1], t̃ ∈ (t?, t??) such that

uε(t̃, h̃) < C?ε.
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1715

This is in contradiction with

uε(t, h) ≥ C?ε for any t ∈ [0, t??), h ∈ [0, 1],

which is verified in Step 2.

Step 1. a priori estimates.
First, multiplying (2.9) by u2ε gives

1

3
(u3ε)t = − u6ε

ε+ u2ε
(u3ε)hhhh.

Then multiply it by (u3ε)hhhh and integrate by parts. We have

(2.24)
1

6

d

dt

∫ 1

0

((u3ε)hh)2 dh = −
∫ 1

0

u6ε
ε+ u2ε

[
(u3ε)hhhh

]2
dh ≤ 0.

Thus we obtain, for any T > 0,

(2.25) ‖(u3ε)hh‖L∞([0,T ];L2[0,1]) ≤
√

6E
1
2
0 .

Moreover, from (2.24), we also have

(2.26)

∥∥∥∥∥ u3ε√
ε+ u2ε

(u3ε)hhhh

∥∥∥∥∥
L2([0,T ];L2([0,1]))

≤ E
1
2
0 .

Second, to get the lower-order estimate, we need the a priori assumption (2.23).

Multiplying (2.9) by
ε+u2

ε

uε
, we have

(2.27)
d

dt

∫ 1

0

ε ln |uε|+
u2ε
2

dh =

∫ 1

0

(
ε

uε
+ uε

)
uεt dh =

∫ 1

0

−((u3ε)hh)2 dh ≤ 0,

which implies ∫ 1

0

ε ln |uε(t, ·)|+
uε(t, ·)2

2
dh

≤
∫ 1

0

ε lnuε(0) +
uε(0)2

2
dh

≤
∫ 1

0

uε(0)2 dh ≤ C(‖u30‖H2) for any t ∈ [0, T ].

Hence we have∫ 1

0

uε(t, h)
2

2
dh ≤ −

∫ 1

0,|uε|<1

ε ln |uε(t, h)|dh+ C(‖u30‖H2)

≤ −4

3
ε ln ε+ C(‖u30‖H2)

≤ C(‖u30‖H2) for any t ∈ [0, T ],

where we used the a priori estimate (2.23). Thus we have, for any T > 0,

(2.28) ‖uε‖L∞([0,T ];L2[0,1]) ≤ C(‖u30‖H2).
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1716 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

Third, from Lemma 2.5, we have

uε(t, h)
3 − um(t)3 ≤ 2

3
‖(u3ε)hh(t, ·)‖L2([0,1])|h− h?|

3
2 for any t ∈ [0, T ]h ∈ [0, 1].

(2.29)

Since (2.28) gives

um(t)3 ≤
(∫ 1

0

uε(t, h)2 dh

) 3
2

≤ C(‖u30‖H2) for any t ∈ [0, T ],

we know

(2.30) uε(t, h)
3 ≤ C(‖u30‖H2) +

2
√

6

3
E

1
2
0 ≤ C(‖u30‖H2) for any t ∈ [0, T ], h ∈ [0, 1],

where we used (2.25) and (2.29). Hence we have

(2.31) ‖uε‖L∞([0,T ];L∞([0,1])) ≤ C(‖u30‖H2).

This, together with (2.25), shows that, for any T > 0,

(2.32) ‖u3ε‖L∞([0,T ];H2([0,1])) ≤ C(‖u30‖H2).

Therefore, (2.26) and (2.32) yield (2.18).
On the other hand, from (2.24) and (2.9), we have

1

6

d

dt

∫ 1

0

((u3ε)hh)2 dh = −
∫ 1

0

u2ε + ε

u2ε
u2εt dh.

Hence ∫ T

0

∫ 1

0

u2εt dhdt ≤
∫ T

0

∫ 1

0

u2ε + ε

u2ε
u2εt dhdt ≤ C(‖u30‖H2),

which gives

(2.33) ‖uεt‖L2([0,T ];L2([0,1])) ≤ C(‖u30‖H2).

This, together with (2.31), gives that

(2.34) ‖(u3ε)t‖L2([0,T ];L2([0,1])) ≤ C(‖u30‖H2).

In fact, from (2.32) and (2.34), by [8, Theorem 4, p. 288], we also know

u3ε ∈ C([0, T ];H1([0, 1])) ↪→ C([0, T ]× [0, 1]).

Moreover, the two dissipation equalities (2.13) and (2.14) in Definition 2.3 can be
easily obtained from (2.24) and (2.27) separately.

Step 2. Verify the a priori assumption.
First from (2.9), we have

(2.35)
d

dt

∫ 1

0

ε

3u3ε
+

1

uε
dh = 0.
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1717

Hence ∫ 1

0

ε

3uε(t, h)3
+

1

uε(t, h)
dh ≡

∫ 1

0

ε

3(u0 + ε
1
3 )3

+
1

u0 + ε
1
3

dh

≤ Cm0 for any t ∈ [0, T ].(2.36)

Then from (2.29), for any 0 < α ≤ 1
2ε2 , t ∈ [0, T ], we have

αε3

um(t)
3

+
2
√
6E

1
2
0

3 α
3
2 ε3

=

∫ h?+αε2

h?

ε

um(t)
3

+
2
√
6E

1
2
0

3 α
3
2 ε3

dh

≤
∫ 1

0

ε

um(t)
3

+
2
√
6E

1
2
0

3 |h− h?| 32
dh ≤

∫ 1

0

ε

uε(t, h)3
dh ≤ Cm0 .

Thus for any t ∈ [0, T ], we can directly calculate that, for α0 = 1
6E0C2

m0

,

(2.37) um(t) ≥

(
α0

Cm0

− 2
√

6

3
E

1
2
0 α

3
2
0

)
ε3 =

1

18E0C3
m0

ε3 >> ε4

and that

(2.38) u3min ≥ min
t∈[0,T ]

um(t) ≥ 1

18E0C3
m0

ε3 >> ε4

for ε small enough. Note that for ε small enough, such α0 can be achieved. This verifies
the a priori assumption and shows that uε has a positive lower bound depending on
ε, i.e.,

uε(t, h) ≥ 1

18
1
3E

1
3
0 Cm0

ε for any t ∈ [0, T ], h ∈ [0, 1],

which concludes property (i).
Step 3. Uniqueness of solution to (2.9).
Assume u, v are two solutions of (2.9). Then for any fixed ε, from (2.20), we know

u, v ≥ cε > 0, and we have

(2.39)
1

3
(u3 − v3)t = − u6

u2 + ε
(u3)hhhh +

v6

v2 + ε
(v3)hhhh,

(2.40) (u− v)t = − u4

u2 + ε
(u3)hhhh +

v4

v2 + ε
(v3)hhhh.

Let us keep in mind, for any p ≥ 0, u2

ε+u2u
p is increasing with respect to u, so there

exist constants m, M > 0, whose values depend only on ε, ‖u30‖H2([0,1]), p, and m0,
such that

(2.41) m ≤ u2

ε+ u2
up ≤M

and

(2.42) m ≤ v2

ε+ v2
vp ≤M.
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1718 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

First, multiply (2.39) by (u3 − v3)hhhh and integrate by parts. We have

d

dt

∫ 1

0

1

6
(u3 − v3)2hh dh

=

∫ 1

0

[
− u6

u2 + ε
(u3)hhhh +

v6

v2 + ε
(u3)hhhh −

v6

v2 + ε
(u3)hhhh

+
v6

v2 + ε
(v3)hhhh

]
(u3 − v3)hhhh dh

= −
∫ 1

0

v6

v2+ε

(
(u3−v3)hhhh

)2
dh+

∫ 1

0

(
v6

v2+ε
− u6

u2+ε

)
(u3)hhhh(u3−v3)hhhh dh

= : R1 +R2.

For the first term R1, from (2.42), we have

R1 ≤ −m
∫ 1

0

(
(u3 − v3)hhhh

)2
dh,(2.43)

which will be used to control other terms.
For the second term R2, notice that

(2.44)

∥∥∥ v6

v2 + ε
− u6

u2 + ε

∥∥∥
L∞([0,1])

=

∥∥∥∥ (u2 + ε)v6 − (v2 + ε)u6

(v2 + ε)(u2 + ε)

∥∥∥∥
L∞([0,1])

=

∥∥∥∥ u2v2(v4 − u4)

(v2 + ε)(u2 + ε)
+

ε(v6 − u6)

(v2 + ε)(u2 + ε)

∥∥∥∥
L∞([0,1])

≤ C(‖u30‖H2([0,1]), ε,m0)‖v − u‖L∞([0,1]),

where we used the upper bound and lower bound of u, v. Then by Young’s inequality
and Hölder’s inequality, we know

R2 ≤
m

4

∫ 1

0

(
(u3 − v3)hhhh

)2
dh+ C

∥∥∥ v6

v2 + ε
− u6

u2 + ε

∥∥∥2
L∞([0,1])

∫ 1

0

((u3)hhhh)2 dh

(2.45)

≤ m

4

∫ 1

0

((u3 − v3)hhhh)2 dh+ C(‖u30‖H2([0,1]), ε,m0)‖v − u‖2L∞([0,1]),

where we used (2.18) and (2.44). Combining (2.43) and (2.45), we obtain

d

dt

∫ 1

0

1

6
(u3 − v3)2hh dh

(2.46)

≤ −3m

4

∫ 1

0

(
(u3 − v3)hhhh

)2
dh+ C

(
‖u30‖H2([0,1]), ε,m0

)
‖v − u‖2L∞([0,1]).
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Second, multiply (2.40) by u− v and integrate by parts. We have

1

2

d

dt

∫ 1

0

(u− v)2 dh

=

∫ 1

0

[
− u4

u2 + ε
(u3)hhhh +

v4

v2 + ε
(u3)hhhh −

v4

v2 + ε
(u3)hhhh

+
v4

v2 + ε
(v3)hhhh

]
(u− v) dh

= −
∫ 1

0

v4

v2 + ε
(u3 − v3)hhhh(u− v) dh+

∫ 1

0

(
v4

v2+ε
− u4

u2+ε

)
(u3)hhhh(u−v) dh

=: R3 +R4.

For R3, by Hölder’s inequality, we have

(2.47) R3 ≤
m

4

∫ 1

0

((u3 − v3)hhhh)2 dh+ C(‖u30‖H2([0,1]),m0)‖v − u‖2L2([0,1]),

where we used (2.42). To estimate R4, notice that

(2.48)

∥∥∥ v4

v2 + ε
− u4

u2 + ε

∥∥∥
L∞([0,1])

=

∥∥∥∥ (u2 + ε)v4 − (v2 + ε)u4

(v2 + ε)(u2 + ε)

∥∥∥∥
L∞([0,1])

=

∥∥∥∥ u2v2(v2 − u2)

(v2 + ε)(u2 + ε)
+

ε(v4 − u4)

(v2 + ε)(u2 + ε)

∥∥∥∥
L∞([0,1])

≤ C
(
‖u30‖H2([0,1]), ε,m0

)
‖v − u‖L∞([0,1]).

Hence, we have

(2.49)

R4 ≤ C
∫ 1

0

(u− v)2 dh+ C
∥∥∥ v4

v2 + ε
− u4

u2 + ε

∥∥∥2
L∞([0,1])

∫ 1

0

((u3)hhhh)2 dh

≤ C
∫ 1

0

(u− v)2 dh+ C
(
‖u30‖H2([0,1]), ε,m0

)
‖v − u‖2L∞([0,1]).

Therefore, combining (2.47) and (2.49), we obtain

(2.50)

1

2

d

dt

∫ 1

0

(u− v)2 dh

≤ m

4

∫ 1

0

(
(u3 − v3)hhhh

)2
dh+ C(‖u30‖H2([0,1]),m0, ε)‖v − u‖2L∞([0,1]).

Finally, (2.46) and (2.50) show that

(2.51)

d

dt

[∫ 1

0

(u− v)2 dh+

∫ 1

0

(u3 − v3)2hh dh

]
≤ C

(
‖u30‖H2([0,1]), ε,m0

)
‖v − u‖2L∞([0,1]).

In remains to show the right-hand side of (2.51) is controlled by
∫ 1

0
(u− v)2 dh+∫ 1

0
(u3 − v3)2hh dh. From (2.20), we have

cε|u− v| ≤ |u− v|(u2 + v2 + uv) = |u3 − v3|.
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1720 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

Thus

‖v − u‖2L∞([0,1]) ≤ cε‖v
3 − u3‖2L∞([0,1])

≤ cε‖v3 − u3‖2H2([0,1])

≤ cε
(
‖v3 − u3‖2L2([0,1]) + ‖(v3 − u3)hh‖2L2([0,1])

)
≤ cε

(
‖v − u‖2L2([0,1]) + ‖(v3 − u3)hh‖2L2([0,1])

)
.

This, together with (2.51), gives

(2.52)

d

dt

[∫ 1

0

(u− v)2 dh+

∫ 1

0

(u3 − v3)2hh dh

]
≤ C(‖u30‖H2([0,1]),m0, ε)

[∫ 1

0

(u− v)2 dh+

∫ 1

0

(u3 − v3)2hh dh

]
.

Hence if u(0) = v(0), Grönwall’s inequality implies u = v.
Step 4. The properties (ii) and (iii).
To obtain (ii), denote w = u3ε. From (2.18), we know w ∈ L∞(0, T ;H2([0, 1])).

Since H2([0, 1]) ↪→ C1, 12 ([0, 1]), we can get (2.21) directly.
To obtain (iii), for any δ > 0, (2.36) also gives that

µ{(t, h);uε < δ}1

δ
≤
∫ T

0

∫ 1

0

ε

3u3ε
+

1

uε
dhdt≤ Cm0T,

which concludes (2.22).
This completes the proof of Proposition 2.6.

2.2. Global existence of weak solution to PDE (1.4). After those prepara-
tions for a regularized system, we can start to prove the global weak solution of (1.4).

Proof of Theorem 2.2. In Steps 1 and 2, we will first prove that the regularized
solution uε obtained in Proposition 2.6 converges to u, and u is positive almost ev-
erywhere. Then in Steps 3 and 4, we prove this u is the weak solution to PDE (1.4)
by verifying conditions (2.5) and (2.6).

Step 1. Convergence of uε.
Assume uε is the weak solution to (2.9). From (2.18) and (2.19), we have

‖(u3ε)t‖L2([0,T ];L2
per([0,1]))

≤ C(‖u30‖H2).

Therefore, as ε→ 0, we can use the Lions–Aubin compactness lemma for u3ε to show
that there exists a subsequence of uε (still denoted by uε) and u such that

(2.53) u3ε → u3, in L∞([0, T ];H1
per([0, 1])),

which gives

(2.54) uε → u a.e. t ∈ [0, T ], h ∈ [0, 1].

Again from (2.18) and (2.19), we have

(2.55) u3ε
?
⇀u3 in L∞([0, T ];H2

per([0, 1]))

and

(2.56) uεt ⇀ ut in L2([0, T ];L2
per([0, 1])),
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1721

which imply that

(2.57) u3 ∈ L∞([0, T ];H2
per([0, 1])), ut ∈ L2([0, T ];L2

per([0, 1])).

In fact, by [8, Theorem 4, p. 288], we also know

u3 ∈ C([0, T ];H1
per([0, 1])) ↪→ C([0, T ]× [0, 1]).

Step 2. Positivity of u.
From (2.54), we know, up to a set of measure zero,

{(t, h);u(t, h) = 0} ⊂
∞⋂
n=1

{
(t, h);uε <

1

n

}
.

Hence by (2.22) in Proposition 2.6, we have

µ{(t, h);u(t, h) = 0} = lim
n→0

µ

{
(t, h);uε <

1

n

}
= 0,

which concludes u is positive almost everywhere.
Step 3. u is a weak solution of (1.4) satisfying (2.5).
Recall uε is the weak solution of (2.9) satisfying (2.12). We want to pass the limit

for uε in (2.12) as ε→ 0. From (2.56), the first term in (2.12) becomes

(2.58)

∫ T

0

∫ 1

0

φuεt dhdt→
∫ T

0

∫ 1

0

φut dhdt.

The limit of the second term in (2.12) is given by the following claim.

Claim 2.8. For PT defined in (2.2), for any function φ ∈ C∞([0, T ] × [0, 1]), we
have

(2.59)

∫ T

0

∫ 1

0

φ
u4ε

ε+ u2ε
(u3ε)hhhh dhdt→

∫ ∫
PT

φu2(u3)hhhh dhdt,

as ε→ 0.

Proof of claim. First, for any fixed δ > 0, from (2.53), we know there exist a
constant K1 > 0 large enough and a subsequence uεk such that

(2.60) ‖uεk − u‖L∞([0,T ]×[0,1]) ≤
δ

2
for k > K1.

Denote

D1δ(t) := {h ∈ [0, 1]; 0 ≤ u(t, h) ≤ δ},
D2δ(t) := {h ∈ [0, 1]; u(t, h) > δ}.

The left-hand side of (2.59) becomes∫ T

0

∫ 1

0

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt

=

∫ T

0

∫
D1δ(t)

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt+

∫ T

0

∫
D2δ(t)

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt

=: I1 + I2.

Then we estimate I1 and I2 separately.
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1722 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

For I1, from (2.60), we have

(2.61) |uεk(t, h)| ≤ 3δ

2
for t ∈ [0, T ], h ∈ D1δ(t).

Hence by Hölder’s inequality, we know

I1 ≤

∫ T

0

∫
D1δ(t)

(
φ

uεk√
εk + u2εk

)2

dhdt

 1
2

(2.62)

·

∫ T

0

∫
D1δ(t)

(
u3εk√
εk + u2εk

(u3εk)hhhh

)2

dhdt

 1
2

≤ C(‖u30‖H2)‖φ‖L∞([0,T ]×[0,1])

(
µ

{
(t, h); |uεk | ≤

3δ

2

}) 1
2

≤ C(‖u30‖H2)T
1
2 δ

1
2 .

Here we used (2.18) in the second inequality and (2.22) in the last inequality.
Now we turn to estimate I2. Denote

Bδ :=
⋃

t∈[0,T ]

{t} ×D2δ(t).

From (2.60), we know

(2.63) uεk(t, h) >
δ

2
for (t, h) ∈ Bδ.

This, combined with (2.18), shows that

(2.64)

(
δ
2

)6
εk +

(
δ
2

)2 ∫ ∫
Bδ

((u3εk)hhhh)2 dhdt

≤
∫ T

0

∫ 1

0

u6εk
εk + u2εk

((u3εk)hhhh)2 dhdt ≤ C(‖u30‖H2
per([0,1])

).

From (2.64) and (2.54), there exists a subsequence of uεk (still denoted as uεk) such
that

(u3εk)hhhh ⇀ (u3)hhhh in L2(Bδ).

Hence, together with (2.54), we have

(2.65) I2 =

∫ ∫
Bδ

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt→

∫ ∫
Bδ

φu2(u3)hhhh dhdt.

Combining (2.62) and (2.65), we know there exists K > K1 large enough such that
for k > K,∣∣∣∣∣
∫ T

0

∫ 1

0

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt−

∫ ∫
Bδ

φu2(u3)hhhh dhdt

∣∣∣∣∣ ≤ C(‖u30‖H2)T
1
2 δ

1
2 ,

D
ow

nl
oa

de
d 

06
/2

3/
17

 to
 1

75
.1

59
.1

26
.1

73
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1723

which implies that

lim
δ→0+

lim
k→∞

[∫ T

0

∫ 1

0

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt−

∫ ∫
Bδ

φu2(u3)hhhh dhdt

]
= 0.

For any ` ≥ 1, assume the sequence δ` → 0. Thus we can choose a sequence ε`k → +∞.
Then by the diagonal rule, we have

δ` → 0, ε`` → +∞,

as ` tends to +∞. Notice
PT =

⋃
δ>0

Bδ.

We have

lim
`→∞

∫ T

0

∫ 1

0

φ
u4ε``

ε`` + u2ε``
(u3ε``)hhhh dhdt

= lim
`→∞

∫ ∫
Bδ`

φu2(u3)hhhh dhdt

=

∫ ∫
PT

φu2(u3)hhhh dhdt.

This completes the proof of the claim.

Hence the function u obtained in Step 1 satisfies equation (2.5). It remains to
verify (2.6) in Step 4.

Step 4. Energy-dissipation inequality (2.6) and (2.7).
First recall the regularized solution uε satisfies the energy-dissipation equality

(2.13), i.e.,

E(uε(·, T )) +

∫ T

0

∫ 1

0

[
u3ε√
ε+ u2ε

(u3ε)hhhh

]2
dhdt = E(uε(·, 0)).

From Claim 2.8, we have

u4ε
ε+ u2ε

(u3ε)hhhh ⇀ u2(u3)hhhh in PT .

Then by the lower semicontinuity of norm, we know

(2.66)

∫ ∫
PT

(u2(u3)hhhh)2 dhdt ≤ lim inf
ε→0

∫ ∫
PT

[
u4ε

ε+ u2ε
(u3ε)hhhh

]2
dhdt

≤ lim inf
ε→0

∫ ∫
PT

[
u3ε√
ε+ u2ε

(u3ε)hhhh

]2
dhdt.

Also from (2.18), we have

(2.67) E(u(t, ·)) ≤ lim inf
ε→0

E(uε(t, ·)) for t ∈ [0, T ].

Combining (2.13), (2.66), and (2.67), we obtain

E(u(T, ·)) +

∫ ∫
PT

(u2(u3)hhhh)2 dhdt ≤ E(u(0, ·)).
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1724 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

Second, recall the regularized solution uε satisfies the Energy-dissipation equality
(2.14), i.e.,

Fε(uε(T, ·)) + 6

∫ T

0

E(uε(t, ·)) dt = Fε(uε(0, ·)).

From (2.18) and the lower semicontinuity of norm, we know

(2.68)

∫ T

0

E(u(t, ·)) dt ≤ lim inf
ε→0

∫ T

0

E(uε(t, ·)) dt,

F (u(t, ·)) ≤ lim inf
ε→0

F (uε(t, ·)) for any t ∈ [0, T ].

For the first term in Fε, for any t ∈ [0, T ], from (2.18) and (2.20), we have

ε

∫ 1

0

| lnuε|dh ≤ C(| ln ε|+ 1)ε→ 0,

as ε tends to 0. This, together with (2.68), implies

F (u(T, ·)) + 6

∫ T

0

E(u(t, ·)) dt ≤ F (u(0, ·)).

Hence we complete the proof of Theorem 2.2.

2.3. Time Hölder regularity of weak solution. In the following, we study
the time-space Hölder regularity of weak solution to PDE (1.4).

Proposition 2.9. Assume the initial data u0 satisfies the same assumption as
in Theorem 2.2. Let u be a nonnegative weak solution to PDE (1.4) with initial
data u0. Then u3 has time-space Hölder continuity in the following sense: for any
t1, t2 ∈ [0, T ], u3 satisfies

(2.69) |u3(t1, h)− u3(t2, h)| ≤ C(‖u30‖H2)
∣∣t2 − t1∣∣ 14 for any h ∈ [0, 1]

and

(2.70) u3ε(t, ·) ∈ C
1
2 ([0, 1]) for any t ∈ [0, T ].

Proof. First, (2.70) is a direct consequence of u3 ∈ L∞([0, T ];H2([0, 1])) and the

embedding H2([0, 1]) ↪→ C1, 12 ([0, 1]).
Second, define two cut-off functions as [17, Lemma B.1]. For any t1, t2 ∈ [0, T ],

t1 < t2, we construct bδ(t) =
∫ t
−∞ b′δ(t)dt, with b′δ(t) satisfying

(2.71) b′δ(t) =


1
δ , |t− t2| < δ,
− 1
δ , |t− t1| < δ,

0 otherwise,

where the constant δ satisfies 0 < δ < |t2−t1|
2 . Then it is obvious that bδ(t) is Lipschitz

continuous and satisfies |bδ(t)| ≤ 2.
For any h0 ∈ (0, 1), we construct an auxiliary function

a(h) = a0

(
K(h− h0)

|t2 − t1|α

)
,(2.72)
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WEAK SOLUTION OF A PDE MODEL ON VICINAL SURFACE 1725

where 0 < α < 1, K > 0 are constants determined later and a0(h) ∈ C∞0 (R) is de-
fined by

a0(h) =

{
1, − 1

2 ≤ h ≤
1
2 ,

0, |h| ≥ 1.

Hence we have

a(h) =

{
1, |h− h0| ≤ 1

2K |t2 − t1|
α,

0, |h− h0| ≥ 1
K |t2 − t1|

α.

In the following, C is a general constant depending only on ‖u30‖H2([0,1]).
Third, since (2.3) implies u3 ∈ L∞([0, T ];H2([0, 1])) ↪→ L∞([0, T ];W 1,∞([0, 1])),

we know for any y ∈ R, t ∈ [0, T ],

(2.73) |u3(t, h0 + y)− u3(t, h0)| ≤ C|y|.

Then we have the next lemma.

Lemma 2.10. Let function u3 ∈ L∞([0, T ];H2([0, 1])). Then for almost every-
where h0 ∈ [0, 1], t1, t2 ∈ [0, T ], t1 < t2, it holds that

|u3(t2, h0)− u3(t1, h0)|

(2.74)

≤ C
(
‖u30‖H2([0,1]), T

)(∫ T

0

∫ 1

0

u3(t, h)a(h)b′δ(t) dhdt|t2 − t1|−α + |t2 − t1|α
)
.

Proof. The proof of Lemma 2.10 is the same as that of Lemma B.2 in [17] except

we proceed on u3 instead of u(t, ·) ∈ C 1
2 ([0, 1]) in [17, Lemma B.2]. We just sketch

the idea here. First calculate the inner product of u3(t, h) and a(h)b′δ(t). Then by the
definition of b′δ(t) and (2.73), we have∫ T

0

∫ 1

0

u3(t, h)a(h)b′δ(t) dhdt

≥ 1

δ

∫ δ

−δ

∫ 1
K |t2−t1|

α

− 1
K |t2−t1|α

a(h0+y)
(
u3(t2+τ, h0)−u3(t1+τ, h0)

)
dy dτ−C(t2−t1)

3α
2 .

Notice the definition of a(h) and the Lebesgue differentiation theorem. Let δ tend to
0, and thus we obtain (2.74).

Finally, since the solution u satisfies (2.5), for any φi ∈ C∞([0, T ] × [0, 1]), u
satisfies

(2.75)

∫ T

0

∫ 1

0

φiut dhdt+

∫ ∫
PT

φiu
2(u3)hhhh dhdt = 0.

We can take φi such that φi → u2a(h)bδ(t) in L2([0, T ];L2([0, 1])) as i → ∞. Hence
from (2.3) and (2.4), we can take a limit in (2.75) to obtain∫ T

0

∫ 1

0

(
1

3
u3
)
t

a(h)bδ(t) dhdt+

∫ ∫
PT

u4(u3)hhhha(h)bδ(t) dhdt = 0.
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1726 YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

Therefore, using (2.3), we have∣∣∣∣∣
∫ T

0

∫ 1

0

(
1

3
u3
)
t

a(h)bδ(t) dhdt

∣∣∣∣∣
≤ ‖u4(u3)hhhh‖L2(PT )‖a(h)bδ(t)‖L2([0,T ];L2([0,1]))

≤ C‖a(h)bδ(t)‖L2([0,T ];L2([0,1])).

Noticing the denifitions of a(h) and bδ(t), we can calculate that

∣∣∣∣∣
∫ T

0

∫ 1

0

1

3
u3a(h)b′δ(t) dhdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫ 1

0

(
1

3
u3
)
t

a(h)bδ(t) dhdt

∣∣∣∣∣
(2.76)

≤ C‖a(h)bδ(t)‖L2([0,T ];L2([0,1])) =

(∫ h0+
1
K |t2−t1|

α

h0− 1
K |t2−t1|α

a(h)2 dh

) 1
2
(∫ T

0

b2δ(t) dt

) 1
2

≤ C|t2 − t1 + 2δ| 12 ≤ C|t2 − t1|
1
2 ,

where we used δ < |t2−t1|
2 .

Therefore, (2.76) and Lemma 2.10 show that

|u3(t2, h0)− u3(t1, h0)|

≤ C
(
‖u30‖H2([0,1]), T

)(∫ T

0

∫ 1

0

u3(t, h)a(h)b′δ(t) dhdt|t2 − t1|−α + |t2 − t1|α
)

≤ C(‖u30‖H2([0,1]), T )
(
|t2 − t1|

1
2−α + |t2 − t1|α

)
for almost everywhere h0 ∈ [0, 1], t1, t2 ∈ [0, T ], t1 < t2. Taking α = 1

4 , we conclude
(2.69) and complete the proof of Proposition 2.9.

3. Long time behavior of weak solution. After establishing the global-in-
time weak solution, we want to study how the solution will behave as time goes to
infinity. In our periodic setup, it turns out to be a constant solution of PDE (1.4).

Theorem 3.1. Under the same assumptions of Theorem 2.2, for every weak solu-
tion u obtained in Theorem 2.2, there exists a constant u? such that, as time t→ +∞,
u converges to u? in the sense

(3.1) ‖u3 − (u?)3‖H1([0,1]) → 0 as t→ +∞

and

(3.2) ‖u− u?‖L∞([0,1]) → 0 as t→ +∞.

Proof. Step 1. Limit of free energy E(u(t)).
For any T > 0, from the second energy-dissipation inequality (2.7), we have

(3.3)

∫ 1

0

u(T )2 dh+ 12

∫ T

0

E(u(t, ·)) dt ≤
∫ 1

0

u20 dh.

By (2.6), we know E(u(t)) is decreasing with respect to t. Then (3.3) implies

(3.4) 12TE(u(T )) ≤ 12

∫ T

0

E(u(t, ·)) dt ≤
∫ 1

0

u20 dh−
∫ 1

0

u(T )2 dh ≤
∫ 1

0

u20 dh.
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Hence we have

(3.5) E(u(t, ·)) ≤ c

t
→ 0 for any t ≥ 0,

which shows that E(u(t)) converges to its minimum 0 as t→ +∞.
On the other hand, denote w := u3, and

E(w) =

∫ 1

0

((u3)hh)2 dh =

∫ 1

0

(whh)2 dh.

Since E(w) is strictly convex in Ḣ2 and E(w) → +∞ when ‖w‖Ḣ2 → +∞, hence

E(w) achieves its minimum 0 at unique critical point w? in Ḣ2. Notice w is periodic
so w? ≡ constant.

Step 2. Convergence of solution to its unique stationary solution.
Assume u3 ∈ L∞([0,∞);H2([0, 1])) is a solution of (1.4). Notice H2([0, 1]) ↪→

H1([0, 1]) compactly. Then for any sequence tn → +∞, there exists a subsequence
tnk and f?(h) in H1([0, 1]) such that

(3.6) u3(tnk , ·)→ f?(·) in H1([0, 1]) as tnk → +∞.

From (3.5) and the uniqueness of critical point, we have∫ 1

0

(
(u(t, ·)3)hh

)2
dh→

∫ 1

0

((w?)hh)2 dh = 0 as t→ +∞.

Hence

(3.7) u3(t, ·)→ w? in Ḣ2([0, 1]) as t→ +∞.

Since u is periodic, we have the Poincaré inequality for (u3)h and

(3.8) u3(t, ·)→ w? in Ḣ1([0, 1]) as t→ +∞.

This, together with (3.6), gives
f?h ≡ 0,

which implies f? is also a constant.
Next we state the constant is unique. Denote u? = (f?)

1
3 . From (3.6) we know

(3.9) ‖u(tnk , ·)3 − (u?)3‖L∞([0,1]) → 0 as tnk → +∞.

Since
(1− x)3 ≤ 1− x3 for 0 ≤ x ≤ 1,

we have

(3.10) |u− u?|3 ≤ |u3 − (u?)3|,

which, together with (3.9), implies

(3.11) ‖u− u?‖L∞([0,1]) → 0 as tnk → +∞.

Hence u converges to u? in L2([0, 1]). Besides, from the second energy-dissipation

inequality (2.7), we know
∫ 1

0
u2 dh is decreasing with respect to t so it has a unique

limit
∫ 1

0
(u?)2 dh. Combining this with the uniqueness of the critical point in Ḣ2, we

know the stationary constant solution is unique and f? ≡ w? ≡ (u?)3. Therefore, as
tnk → +∞, the solution u3(tnk) converges to the unique constant (u?)3 in H1([0, 1]).
From the arbitrariness of tn, we know, as t → +∞, the solution u3 to PDE (1.4)
converges to (u?)3 in H1([0, 1]). Besides, by (3.11) we obtain (3.2).
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Remark 3.2. Given the initial data u0, we cannot obtain a unique value of the
constant solution for all weak solutions to PDE (1.4) so far. From PDE (1.4), the
conservation law for classical solution is obvious,

(3.12)
d

dt

∫ 1

0

1

u
dh = 0 for any t ≥ 0.

Hence for any u0, we can calculate the value of the stationary constant solution u?.

In fact, for m0 =
∫ 1

0
1
u0

dh, we have

(u?)3 =
1( ∫ 1

0
1
u0

dh
)3 =

1

m3
0

.

However, the conservation law for the weak solution is still an open question, although
in physics it is true: u is the slope as a function of height and time satisfying∫ 1

0

1

u
dh =

∫ 1

0

xh dh = x|h=1 − x|h=0 ≡ L.

Appendix A. Formulations using other physical variables. For com-
pleteness, in this appendix we include some alternative forms of PDE (1.4) using
other physical variables to describe the surface dynamics. To avoid confusion brought
by different variables, we replace h by α when the height variable is considered as an
independent variable. Let us introduce the following variables:

• u(α, t), step slope when considered as a function of surface height α;
• ρ(x, t), step slope when considered as a function of step location x;
• h(x, t), surface height profile when considered as a function of step location
x;

• φ(α, t), step location when considered as a function of surface height α.
Several straightforward relations between the four profiles are listed as follows.

First, since φ is the inverse function of h such that

(A.1) α = h(φ(α, t), t) ∀α,

we have

(A.2) φt = − ht
hx
, φα =

1

hx
.

Second, from the definitions above, we know

(A.3) u(α, t) = ρ(φ(α, t), t) = hx(φ(α, t), t) =
1

φα
.

We formally derive the equations for h, ρ, φ from the u-equation, which is consis-
tent with the widely used h, ρ-equation in the previous literature. The four forms of
PDEs are rigorously equivalent for a local strong solution. Now under the assumption
u ≥ 0, we want to formally derive the other three equations from the u-equation (1.4)
(i.e., ut = −u2(u3)αααα if using variable α).

First, from (A.3), we can rewrite (1.4) as

(A.4) φαt =

(
1

φ3α

)
αααα

.
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Integrating respect to α, (A.4) becomes

(A.5) φt =

(
1

φ3α

)
ααα

+ c(t),

where c(t) is a function independent of α and will be determined later.
Second, let us derive the h-equation and the ρ-equation. On one hand, from (A.2)

and (A.3), we have

(A.6) ut = ρxφt + ρt = −ρ ht
hx

+ ρt = −ρx
ρ
ht + ρt.

On the other hand, due to the chain rule uα = ρxφα, we have

(A.7) (u3)α = 3u2uα = 3ρρx =
3

2
(ρ2)x.

Hence

(A.8)

ut = −u2(u3)αααα

= −u2
[((

(u3)αxφα
)
x
φα
)
x
φα

]
= −3

2
ρ

(
1

ρ

(
(ρ2)xx
ρ

)
x

)
x

=
3

2

ρx
ρ

(
(ρ2)xx
ρ

)
x

− 3

2

(
(ρ2)xx
ρ

)
xx

.

Now denote A := − 3
2 ( (ρ2)xx

ρ )x. Comparing (A.6) with (A.8), we have

(ht −A)
ρx
ρ

= (ht −A)x,

which implies

ht −A = λ(t)hx, ρt −Ax = λ(t)ρx,

where λ(t) is a function independent of x and will be determined later.
Therefore, we know h satisfies

(A.9) ht = −3

2

(
(h2x)xx
hx

)
x

+ λ(t)hx,

and ρ satisfies

(A.10) ρt = −3

2

(
(ρ2)xx
ρ

)
x

+ λ(t)ρx.

From (A.9), we immediately know d
dt

∫ L
0
h(x) dx = 0. Hence we have∫ 1

0

φ dα = L−
∫ L

0

h(x)dx

due to (A.2). Thus we know d
dt

∫ 1

0
φdα = 0. This, together with (A.5), gives c(t) = 0,

and we obtain the φ-equation

(A.11) φt =

(
1

φ3α

)
ααα

.
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Now keep in mind the chain rule ∂α = 1
hx
∂x and (A.2). Changing the variable in

(A.11) shows that

− ht
hx

=

(
(h3x)x

1

hx

)
αα

=

(
3

2
(h2x)x

)
αα

=
3

2

1

hx

(
(h2x)xx
hx

)
x

,

and λ(t) = 0. Hence we obtain the h-equation

(A.12) ht = −3

2

(
(h2x)xx
hx

)
x

and the ρ-equation

(A.13) ρt = −3

2

(
(ρ2)xx
ρ

)
xx

.

From (A.11), (A.12), and (A.13), we can immediately see that
∫ 1

0
φdα,

∫ L
0
hdx, and∫ L

0
ρdx are all constants of motion. Equation (20) in [15, p. 213] is exactly (A.12) for

vicinal (monotone) surfaces, which is consistent with our equations.
Now we state the uniqueness and existence result for the local strong solution to

(1.4) with positive initial value. The proof for Theorem A.1 is standard so we omit
it here.

Theorem A.1. Assume u0 ∈Hm
per([0, 1]), u0≥β, for some constant β > 0, m∈Z,

m≥ 5. Then there exists time Tm> 0 depending on β, ‖u0‖Hmper([0,1]), such that

u ∈ L∞([0, Tm];Hm
per([0, 1])) ∩ L2([0, Tm];Hm+2

per ([0, 1])),

ut ∈ L∞([0, Tm];Hm−4
per ([0, 1])),

is the unique strong solution of (1.4) with initial data u0, and u satisfies

(A.14) u ≥ β

2
a.e. t ∈ [0, Tm], α ∈ [0, 1].

From (A.14) in Theorem A.1, we know

u(α, t) = ρ(φ(α, t), t) = hx(φ(α, t), t) =
1

φα
≥ β

2
> 0 a.e. t ∈ [0, Tm], α ∈ [0, 1].

Hence the formal derivation is mathematically rigorous and we have the equivalence
for a local strong solution to (1.4), (A.12), (A.13), and (A.11). However, as far as
we know, the rigorous equivalence for a global weak solution to (1.4), (A.12), (A.13),
and (A.11) is still open. It is probably more difficult than the uniqueness of the weak
solution.
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