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We study the Langevin dynamics of a physical system with manifold structure 
M ⊂ Rp based on collected sample points {xi}ni=1 ⊂ M that probe the unknown 
manifold M. Through the diffusion map, we first learn the reaction coordinates 
{yi}ni=1 ⊂ N corresponding to {xi}ni=1, where N is a manifold diffeomorphic to M
and isometrically embedded in R� with � � p. The induced Langevin dynamics on 
N in terms of the reaction coordinates captures the slow time scale dynamics such 
as conformational changes in biochemical reactions. To construct an efficient and 
stable approximation for the Langevin dynamics on N , we leverage the correspond-
ing Fokker-Planck equation on the manifold N in terms of the reaction coordinates 
y. We propose an implementable, unconditionally stable, data-driven finite volume 
scheme for this Fokker-Planck equation, which automatically incorporates the man-
ifold structure of N . Furthermore, we provide a weighted L2 convergence analysis of 
the finite volume scheme to the Fokker-Planck equation on N . The proposed finite 
volume scheme leads to a Markov chain on {yi}ni=1 with an approximated transition 
probability and jump rate between the nearest neighbor points. After an uncondi-
tionally stable explicit time discretization, the data-driven finite volume scheme 
gives an approximated Markov process for the Langevin dynamics on N and the 
approximated Markov process enjoys detailed balance, ergodicity, and other good 
properties.
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1. Introduction

1.1. Problem set up and goals

We study a complex chemical, biological or physical system P which can be described by p-dimensional 
variables x in Rp with p � 1. Due to some equality and inequality constraints, we assume the essential 
structure of the system P is an unknown d dimensional closed smooth Riemannian submanifold M of 
Rp [15,14]. The manifold M is unknown in the sense that we do not know the charts and the metric 
of M. The essential physical motions in the system P are those slow time scale structural changes or 
conformational changes rather than the fast time scale motions such as vibrations. Therefore, despite the 
high dimensionality of P in practice, we can find some intrinsic low dimensional variables, called reaction 
coordinates, to represent those essential structural or conformational changes in a low dimensional space 
[15,14,48]. For instance, a typical one dimensional reaction coordinate is the distance between a carbon 
center and a nucleophile in an SN2 reaction (one simple nucleophilic substitution reaction mechanism); see 
also the conformational transitions of alanine dipeptide representing by two backbone dihedral angles [28]. 
There are many other collective physical/chemical quantities, such as bond length/angle, dihedral angles, 
and intermolecular distance, that can be used as the reaction coordinates to represent the whole process 
of conformational transitions or chemical reactions. Mathematically, the reaction coordinates should be a 
smooth embedding y = Φ(x) : M ↪→ R� with � � p to preserve the topological structure of the underlying 
manifold. Then, N = Φ(M) is a submanifold of R� with the metric induced by the Euclidean metric of 
R�. The reaction coordinates can be realized through the nonlinear dimension reduction algorithms [45]. 
Suppose {xi}ni=1 are n data points well distributed on the unknown manifold M ⊂ Rp, while these n
points are collected by some sampling methods. A nonlinear dimension reduction algorithm constructs an 
embedding Φ by using the coordinates of {xi}ni=1 in Rp so that we can present the high dimensional data 
{xi}ni=1 ⊂ M ⊂ Rp as yi = Φ(xi) ⊂ N ⊂ R� in the low dimensional space.

We assume the dynamics for the physical system P can be described by a continuous strong Markov 
process on M ⊂ Rp. Particularly, the simplest and widely used physical model is the following over-damped 
Langevin dynamics with a drift determined by some potentials U on M:

dxt = −∇MU(xt) dt +
√

2kT dMBt. (1.1)

We explain the notations in (1.1) below. Let {τMi ; 1 ≤ i ≤ d} be an orthonormal basis of the tangent plane 
Txt

M. Denote ∇M :=
∑d

i=1 τ
M
i ∇τM

i
=
∑d

i=1 τ
M
i ⊗ τMi ∇ as the surface gradient and ∇τM

i
= τMi · ∇ as 

the tangential derivative in the direction of τMi . Let k be the Boltzmann constant, T be the temperature 
[20] and dMBt be a Brownian motion on M. This Brownian motion on manifold can be realized by the 
projection of the standard Brownian motion Bt in the ambient space Rp:

dMBt :=
d∑

i=1
τMi (xt) ⊗ τMi (xt) ◦ dBt, (1.2)

where ◦ is understood in the Stratonovich sense in the stochastic integral [35, p. 19, p. 78]. We refer the 
readers to [3] for the general Langevin SDEs on Riemannian manifolds.

The potential U(x) is also known as the energy landscape for the physical system P , which is usually 
very complicated and indicates all the possible (meta)stable states of a physical system. For instance, in 
a simple nucleophilic substitution reaction mechanism, the states of reactants and products are two stable 
states in the energy landscape [20]. A saddle point state on the energy landscape is called the transition 
state, whose value determines the energy barrier in a chemical reaction. In this paper, we assume the output 
of the potential U at each data point {xi}ni=1 is known. The equilibrium of this system P , also known as 
the invariant probability density measure, is ρ∞(x) ∝ e−

U(x)
kT , x ∈ M.
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Suppose we learn the reaction coordinates y = Φ(x), x ∈ M. The diffeomorphism Φ : M → N induces a 
map Φ∗ from the space Γ(TM) of the smooth vector fields on M to the space Γ(TN ) of the smooth vector 
fields on N such that for any f ∈ C∞(N ) and V ∈ Γ(TM)

(Φ∗V )f(y) = V (f ◦ Φ)(x), y = Φ(x). (1.3)

The Stratonovich formulation transforms consistently under diffeomorphism Φ [35, p. 20]. Notice τNi ∈ R�

is defined by the induced map Φ∗ and Bt is the �-dimensional Brownian motion. Therefore, instead of 
considering (1.1) on M directly, we consider the SDE on N

dyt = −∇NUN (yt) dt +
√

2kT
d∑

i=1
τNi (yt) ⊗ τNi (yt) ◦ dBt, (1.4)

where ∇N :=
∑d

i=1 τ
N
i ∇τN

i
=

∑d
i=1 τ

N
i ⊗ τNi ∇ is the surface gradient, ∇τN

i
= τNi · ∇ is the tangential 

derivative in the direction of τNi , and UN is the induced potential on manifold N by the composition

UN (y) := U(x) = U(Φ−1(y)). (1.5)

The main goal of this paper is to accurately simulate the induced Langevin dynamics (1.4) in terms of 
the reaction coordinates y and the information of the potential U . To simulate the SDE (1.4) on N without 
exact manifold information, one of the most natural ways is to construct an approximated stochastic process 
on the points {yi}ni=1. However, the standard Euler–Maruyama method on manifold can not provide a stable 
simulation. Hence, our strategy for constructing a stochastic process over {yi}ni=1 is described as follows: (i) 
we detour to approximate the corresponding Fokker-Planck equation on the manifold with a finite volume 
scheme; (ii) we construct an approximated Voronoi tessellation associated with {yi}ni=1; (iii) we construct 
the transition probability and the jump rate from the finite volume scheme.

By Ito’s formula, the SDE (1.4) gives the following Fokker-Planck equation, which is the governing 
equation for the density ρNt := ρN (y, t),

∂tρ
N
t = divN (kT∇N ρNt + ρNt ∇NUN ) =: FPNρNt , (1.6)

where divN is the surface divergence defined as divN ξ =
∑d

i=1 τ
N
i · ∇τN

i
ξ. One equivalent form of (1.6) is 

the relative entropy formulation

∂tρ
N
t = kTdivN

(
e−

UN
kT ∇N (ρNt e

UN
kT )

)
= FPNρNt . (1.7)

Then the main issue is to simulate the Fokker-Planck equation (1.6) on N whose solution ρNt (y) drives 
any initial density ρN0 to the invariant measure ρN∞(y) ∝ e−

UN (y)
kT . After designing a finite volume scheme for 

the Fokker-Planck equation (1.6) on N , we construct an approximated transition probability and jump rate 
from it. This approximated Markov process on the manifold automatically incorporates both the manifold 
structure and the equilibrium information. It enables some implementable data-driven computations on 
the manifold such as finding the optimal cluster-cluster coarse-grained network, cf. [16,19,37,40,50,47] and 
finding the transition path and energy landscape of chemical reactions, cf. [23,21,43,22,28,33,31,32].

1.2. Practical difficulties and mathematical implementations

The first difficulty is that we are not able to acquire all the information about the system P . Hence, we 
assume that we can sample n points {xi}ni=1 from M based on a density function on M with lower and 
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upper bounds so that the data points are well distributed on M. In Section 2, we first show that the diffusion 
map can approximate an embedding Φ of the manifold M. Then, we apply the diffusion map algorithm [15]
on {xi}ni=1 to find the reaction coordinates so that we have {yi = Φ(xi)}ni=1 ⊂ N = Φ(M) ⊂ R�. Note that 
{yi}ni=1 can also be regarded as the samples based on a density function on N with lower and upper bounds.

Next, we focus on simulating the Fokker-Planck equation (1.6) with a given equilibrium potential UN (y). 
To find the trajectory ρNt , we need to solve the Fokker-Planck equation on the manifold N ⊂ R�. Our method 
uses the data points {yi}ni=1 ⊂ N to construct a discrete approximation of the Fokker-Planck equation (1.6). 
It is proved that the data points are well-distributed on N whenever the points are sampled based on a 
density function with lower and upper bounds [55,41]. Hence, we can construct a “regularly shaped” Voronoi 
tessellation on N from {yi}ni=1 ⊂ N . With the help of such Voronoi tessellation, we introduce a finite volume 
scheme by applying the relative entropy formulation and finite volume method to (1.6). The finite volume 
scheme assigns a transition probability and a jump rate for an approximated Markov process on {yi}ni=1, 
i.e., random walk between the nearest neighbor points. In Section 3.2, we prove all the good properties 
of the approximated Markov process on {yi}ni=1 including detailed balance, ergodicity, L1-contraction and 
χ2-divergence dissipation law.

To obtain an implementable finite volume scheme, an approximated Voronoi tessellation associated with 
{yi}ni=1 needs to be constructed with high accuracy. By using the Euclidean coordinates of {yi}ni=1, each 
Voronoi cell can be approximated by a polygon in a tangent space of N ; see Section 3.4 for detailed error 
estimates for the approximated cell volume and face area. Therefore, an approximated transition probability 
based on the volume of each polygon and the areas of its faces can be assigned over {yi}ni=1 and leads to 
an implementable finite volume scheme (3.78) for the Fokker-Planck equation (1.6); see Section 3 and 
Theorem 3.14 for consistence and convergence analysis for this implementable finite volume scheme. We 
also provide an unconditionally stable explicit time descretization for the finite volume scheme based on 
the detailed balance property of the Markov process in Section 3.5. This explicit scheme is very efficient 
and enjoys a mass conservation law, unconditional maximum principle and exponential convergence to 
equilibrium. At last, to show the accuracy of the finite volume scheme, we simulate challenging numerical 
examples including datasets on a dumbbell, a Klein bottle and a sphere in Section 4.

The approximated transition probability between the nearest neighbor points for the Markov process 
on {yi}ni=1 ⊂ N reveals the manifold structure and enables us to efficiently conduct computations such 
as clustering, coarse-graining and finding the minimal energy path on the manifold. Notice this transition 
probability between the nearest neighbor points not only incorporates the manifold information but also 
gives an adapted graph network on the manifold.

The remaining part of the paper will be organized as follows. In Section 2, we use diffusion map to learn 
the reaction coordinates y. In Section 3, we propose a data-driven solver for the Fokker-Planck equation 
on manifold N , which assigns an approximated transition probability and a jump rate for an approximated 
Markov process on {yi}ni=1. In Section 4, we also provide several simulation results for the Fokker-Planck 
dynamics on manifolds learned from point clouds. All the technical lemmas are provided in Appendix for 
completeness. All the commonly used notations are listed in Table 1 for the sake of clarity.

2. Review of nonlinear dimension reduction and diffusion map

In this section, we focus on learning the reaction coordinates y for the d-dimensional manifold N ⊂ R�

to extract the conformational changes with slow time scale from other fast time scale vibrations. We first 
introduce the basic idea about the nonlinear dimension reduction under the following assumption.

Assumption 2.1. Let M be a d dimensional smooth closed Riemannian submanifold of Rp. Suppose that 
ρ∗ is a smooth probability density function on the manifold M. We assume that ρ∗ is bounded from below 

and from above, i.e. ρm ≤ ρ∗ ≤ ρM . Let {x1 · · · , xn} ⊂ M i.i.d.∼ ρ∗.
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Table 1
Commonly used notations in this paper.

Symbols Meaning

Rp, R� High (low) dimensional ambient spaces
d Dimension of the Riemannian manifolds
M, N d-dimensional smooth closed Riemannian submanifolds of the Euclidean spaces
x, y Points on M and N respectively
dVM, dVN Volume forms on M and N respectively
Δ Laplace Beltrami operator of a manifold
λi, ψi The eigenvalues and the corresponding orthonormal (in L2) eigenfunctions of Δ
Φ Reaction coordinates (Smooth embedding of a manifold)
X, Y Random variables with the range M and N respectively
ρ∗, ρM

t Probability density functions on M
ρ∗∗, ρN

t Probability density functions on N
n ∈ N Number of data points sampled from M based on ρ
{x1, · · · ,xn} Data points sampled from M based on ρ
ε The bandwidth in the diffusion map
Kε Kernel in the diffusion map
Wε,α Affinity matrix in diffusion map with α normalization
Lε,α diffusion map matrix
λi,n,ε, vi,n,ε The eigenvalues and the corresponding orthonormal eigenvectors in l2 of I−Lε,1

ε2

Ci the Voronoi cell around the point yi on the manifold N
Γij the Voronoi face between yi and yj on the manifold N
r bandwidth in the Voronoi cell approximation algorithm
s threshold in the Voronoi cell approximation algorithm
ιk the projection map in the Voronoi cell approximation algorithm
Pij , ηi the transition probability and jump rate of constructed Markov chain

Nonlinear dimension reduction algorithms construct maps which map {x1 · · · , xn} to some low dimen-
sional space R� while preserving the topological or geometric structure of the underlying manifold. There are 
a lot of well known dimension reduction algorithms, for instance, ISOMAP [53], eigenmap [6], locally linear 
embedding (LLE) [49] and its variations like Hessian LLE [17], vector diffusion map [51,52]. In this work, 
we focus on the algorithm diffusion map which is introduced by Coifman and Lafon [15]. The algorithm of 
the diffusion map can be described in the following steps:

(i) For x, x′ ∈ M, we define Kε(x, x′) = exp(−‖x−x′‖2
Rp

4ε2 ), where ε > 0 is the bandwidth.
(ii) Define qε(x) :=

∑n
i=1 Kε(x, xi). We define the affinity matrix which is the n ×n matrix Wε,α: Wε,α,ij :=

Kε(xi,xj)
qαε (xi)qαε (xj) . This step is called the α-normalization.

(iii) Define the n × n diagonal matrix D with diagonal entries Dε,α,ii =
∑n

j=1 Wε,α,ij . Let

Lε,α = D−1
ε,αWε,α. (2.1)

(iv) To reduce the dimension of the dataset {x1 · · · , xn}. We choose α = 1. Denote

λ0,n,ε ≤ · · · ,≤ λn−1,n,ε (2.2)

to be the eigenvalues of I−Lε,1
ε2 . We find the first � corresponding eigenvectors of I−Lε,1

ε2 , namely, 
{vj,n,ε}�j=1. Then the map

xi → (v1,n,ε(i), · · · , v�,n,ε(i)) (2.3)

reduces the dimension of the dataset into the Euclidean space R�.

Remark 2.2. Note that the matrix Lε,1 in (2.1) may not be symmetric in general. Therefore, in the imple-
mentation, we use the matrix L̃ε,1 = D

−1/2
ε,1 Wε,1D

−1/2
ε,1 . L̃ε,1 is similar to Lε,1 and is symmetric. Therefore, 

they share the same eigenvalues and the corresponding eigenvectors differ by D−1/2
ε,1 .
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Let Δ be the Laplace-Beltrami operator of M. Let {λi}∞i=0 be the eigenvalues of −Δ, and

Δψi = −λiψi, (2.4)

where ψi is the corresponding eigenfunction normalized in L2(M). We have 0 = λ0 < λ1 ≤ λ2 ≤ · · · . Note 
that ψ0 = 1√

M is a constant.
In the rest of this section, we will provide a justification that the diffusion map

xi → (v1,n,ε(i), · · · , v�,n,ε(i)) (2.5)

approximates an embedding of M into a Euclidean space. The justification consists of two steps. First, we 
review the results about the spectral convergence from I−Lε,1

ε2 to −Δ. Intuitively, these results show that 
the eigenpairs of I−Lε,1

ε2 approximate the corresponding eigenpair of −Δ. Second, we discuss the result that 
shows the eigenfunctions of −Δ can be used to construct an embedding of M. Since ψ0 is a constant, based 
on the justification, the first eigenvector v0,n,ε of I−Lε,1

ε2 is not used in the construction of the diffusion map.
We start from the theoretical results that relate the diffusion map to the Laplace Beltrami operator when 

the samples are from a submanifold. It is proved in [15] and [51] that I−Lε,1
ε2 converges pointwisely to −Δ

in the following sense.

Theorem 2.3. (Coifman-Lafon, [15], Singer-Wu, [51]) Suppose α = 1. Under Assumption 2.1, for f ∈
C3(M), if 

√
logn

√
nε

d
2 +2

→ 0 and ε → 0 as n → ∞, then with probability greater than 1 − 1
n2 , for all i = 1, · · · , n, 

we have

f(xi) −
∑n

j=1 Lε,1(i, j)f(xj)
ε2

= −Δf(xi) + O(ε) + O(
√

log n
√
nε

d
2 +2

). (2.6)

The α = 1 normalization in the diffusion map comes from the idea of density estimation. When α is 
chosen to be 1, the impact of the nonuniform density ρ∗ is removed. Hence, the Laplace-Beltrami operator 
in the previous theorem is not contaminated by the probability density function ρ∗.

A stronger version of the convergence theorem in [52] shows the spectral convergence of the diffusion map 
in L2 sense. At last, in [18], it shows the L∞ spectral convergence result based on the following definition.

Definition 2.4. Under Assumption 2.1, suppose vj,n,ε is an eigenvector of I−Lε,1
ε2 which is normalized in the 

l2 norm. Let Nk = |BRp

ε (xk) ∩{x1, · · · , xn}|, the number of points in the ε ball in the ambient space. Then, 
we define the l2 norm of vj,n,ε with respect to the inverse estimated probability density 1/ρ̂∗ as:

‖vj,n,ε‖l2(1/ρ̂∗) :=

√√√√ |Sd−1|εd
d

n∑
k=1

vj,n,ε(k)
Nk

,

where |Sd−1| is the volume of the d − 1 dimensional standard sphere. Define the renormalization of vj,n,ε in 
the l2 norm with respect to the inverse estimated probability density 1/ρ̂∗ as:

Vj,n,ε := vj,n,ε
‖vj,n,ε‖l2(1/ρ̂∗)

. (2.7)

Intuitively, vj,n,ε is a discretization of some function on M while ‖vj,n,ε‖l2(1/ρ̂∗) is an approximation of 
the L2(M) norm of the function. Hence, Vj,n,ε can be regarded as a discretization of some function that 
is normalized in L2(M). On the other hand, the vector ψj = (ψj(x1), · · · , ψj(xn))� is a discretization of 
ψj which is also normalized in the L2(M). Therefore, it is reasonable to compare Vj,n,ε and ψj rather than 
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vj,n,ε and ψj . In the following theorem, it shows that, on M, if we fix K, the bandwidth ε is small enough 
based on K and the number of data points n is large enough based on ε, then for all 0 ≤ j < K, with high 
probability, λj,n,ε is an approximation of the j-th eigenvalue λj of −Δ and Vj,n,ε is an approximation of ψj .

Theorem 2.5. (Dunson-Wu-Wu, [18]) Under Assumption 2.1, suppose all the eigenvalues of Δ are simple. 
Let (λj , ψj) be the j-th eigenpair of −Δ with ψj normalized in L2(M). Let Lε,1 be the matrix in (2.1). Let 
(λj,n,ε, Vj,n,ε) be the j-th eigenpair of I−Lε,1

ε2 with Vj,n,ε normalized as in Definition 2.4. Fix a positive integer 
K, let ΓK := min1≤j≤K dist(λj , σ(−Δ) \ {λj}), where σ(−Δ) is the spectrum of −Δ. Suppose

ε ≤ K1 min
((

min(ΓK , 1)
K2 + λ

d/2+5
K

)2

,
1

(K3 + λ
(5d+7)/4
K )2

)
, (2.8)

where K1 and K2, K3 > 1 are constants depending on d, the lower bound of the p.d.f. ρm, the C2 norm of 
p.d.f., the volume, the injectivity radius, the curvature, and the second fundamental form of the manifold.

If n is sufficiently large so that ε = ε(n) ≥ ( logn
n )

1
4d+13 , then with probability greater than 1 −n−2, for all 

0 ≤ j < K

|λj,n,ε − λj | ≤ K4ε
3/2.

If n is sufficiently large so that ε = ε(n) ≥ ( logn
n )

1
4d+8 , then with probability greater than 1 − n−2, there 

are aj ∈ {1, −1} such that for all 0 ≤ j < K

max
1≤i≤n

|ajVj,n,ε(i) − ψj(xi)| ≤ K5ε
1/2.

K4 depends on d, the diameter of the manifold and the lower bound and the C2 norm of the p.d.f. K5 depends 
on d, the diameter and the volume of the manifold, and the lower bound and the C2 norm of the p.d.f.

Remark 2.6. Note that in the above theorem, the coefficients K4 and K5 only depend on the geometry of 
the manifold and the data points distribution on the manifold. They are independent of the eigenvalues 
and the eigengaps of Δ. In the spectral convergence analysis, the dependence on the eigenvalues and the 
eigengaps of Δ is reflected from the relation (2.8). The relation implies that ε should be smaller when K
increases.

Moreover, the above theorem assumes that the eigenvalues of Δ are simple for notational simplicity. In 
the case when the eigenvalues are not simple, the same theorem still works by introducing an orthogonal 
transformation on the eigenspace. The readers may refer to Remark 4 in [12] for details.

The matrix I−Lε,1
ε2 can be regarded as the density corrected graph Laplacian on the complete undirected 

graph with vertices {x1 · · · , xn} and Gaussian weights on the edges. Hence, the above theorem discusses 
the spectral convergence of a density corrected graph Laplacian to the Laplace-Beltrami operator in the 
L∞ sense. We also refer the readers to [54,10,12] which discuss the spectral convergence rates of the graph 
Laplacians to the Laplace Beltrami operator in the L2 sense and [11] which is another work discussing the 
spectral convergence rate of the graph Laplacian to the Laplace-Beltrami operator in the L∞ sense.

Next, we review some results in spectral geometry. Based on the work of [7], [36], [4] and [46], we know 
that the eigenfunctions of Δ can be used to construct an embedding of the manifold into a Euclidean space. 
More explicitly, we describe the following theorem in [4]. The readers may refer to Appendix A for more 
detailed discussions about the relevant theorems in [7], [36] and [46].

Theorem 2.7. (Bates, [4]) Suppose M is a d dimensional smooth closed Riemannian manifold. Suppose that 
the Ricci curvature of M has lower bound RicM ≥ (d − 1)k, the injectivity radius of M has lower bound 
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i(M) ≥ i0 and the volume of M has upper bound Vol(M) ≤ V . There is a C(d, k, i0, V ) such that if q ≥ C, 
for x ∈ M

Ψq(x) = (ψ1(x), · · · , ψq(x)), (2.9)

is a smooth embedding of M into Rq.

Recall that ψ0 is a constant, so it is not used in the construction of the embedding. Based on the above 
theorem, let � be the smallest integer q such that Ψq(x) is an embedding and we define

Ψ(x) = (ψ1(x), · · · , ψ�(x)). (2.10)

Hence, we have d ≤ � ≤ C(d, k, i0, V ). In other words, � can be bounded above by the dimension, Ricci 
curvature lower bound, the injectivity radius lower bound and the volume upper bound of the manifold M.

Based on Definition 2.4 and Theorem 2.5, we provide the following definition of the reaction coordinates 
which we use in this work.

Definition 2.8 (Reaction coordinates). Let (λi, ψi) be the i-th eigenpair of the Laplace Beltrami operator on 
M, −Δ, with ψj normalized in L2(M). Suppose for x ∈ M

Ψ(x) = (ψ1(x), · · · , ψ�(x)), (2.11)

is a smooth embedding of M into R�. Let A be a � × � diagonal matrix such that Ajj = aj‖vj,n,ε‖l2(1/ρ̂∗)
where ‖vj,n,ε‖l2(1/ρ̂∗) is defined in Definition 2.4 and aj is defined in Theorem 2.5. Under Assumption 2.1, 
we define

yi = Φ(xi) := A ◦ Ψ(xi) ∈ R�, (2.12)

to be the reaction coordinates of xi

Note that A ◦Ψ is also a smooth embedding of M into R�. Hence, by Theorem 2.5, we have a justification 
of the diffusion map. Let {v1,n,ε, · · · , v�,n,ε} be the first � eigenvectors of I−Lε,1

ε2 in Step (iv) of the algorithm 
of the diffusion map. Then, the diffusion map

xi → (v1,n,ε(i), · · · , v�,n,ε(i)), (2.13)

is an approximation of yi = Φ(xi) := A ◦ Ψ(xi) over the data points {x1 · · · , xn}.

Although the diffusion map is applied to construct the reaction coordinates in this work, it also can be 
used to solve the Fokker-Planck equations on M. Under Assumption 2.1, for f ∈ C3(M), it is shown in [15]
that I−Lε,α

ε2 converges pointwisely (in the sense of Theorem 2.3) to the Kolmogrov backward operator

Lαf = −Δf + 2(1 − α)∇U · ∇f,

where U = − log ρ∗ and ρ∗ is the unknown sample density defined in Assumption 2.1. Hence, the eigenpairs 
of I−Lε,α

ε2 approximate the corresponding eigenpairs of Lα. When α = 1/2, let L = L1/2. Let

L∗f = −Δf −∇ · (f∇U)

be the Kolmogrov forward (Fokker-Planck) operator. Then, L and L∗ share the same eigenvalues and their 
eigenfunctions differ by a factor ρ∗. The solution to the Fokker-Planck equation
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∂ρt = −L∗ρt

can be expressed as a series sum in terms of the eigenpairs of the L∗. The coefficients in the series are 
determined by the projection of the initial condition onto each eigenspace. Suppose the unknown sample 
density ρ∗ is approximated through a density estimation. Then, the eigenpairs of L∗ over the sample points 
can be approximated by using the eigenpairs I−Lε,1/2

ε2 . In [8,9], the authors construct an approximation of 
the solution to the Fokker-Planck equation by using the spectral method and they explore the dynamics 
on the manifold. The solution is constructed by projecting the discretization of the initial condition onto 
the approximation of the finite dimensional eigenspaces of L∗. It is worth mentioning that the setup and 
methods applied in our work are different from [15,8,9]. First, we will use the diffusion map to find the 
reaction coordinates and reconstruct a manifold N in a low dimensional space. As we describe in the 
introduction, instead of solving the Fokker-Planck equation on M in the high dimensional space, we will 
solve the Fokker-Planck equation on N . Second, we assume that the equilibrium potential UN in the Fokker-
Planck equation on N is equal to − log ρN∞, where ρN∞ is a known equilibrium density. However, it is not 
necessary that ρN∞ is equal to the sample density on N . At last, we will propose a finite volume scheme 
rather than apply the spectral method to solve the Fokker-Planck equation.

3. Solution to the Fokker-Planck equation on N

Suppose N is a d dimensional smooth closed Riemannian submanifold of R� with the coordinates y
obtained in Section 2. In this section, given an equilibrium potential UN (y), we will focus on designing a 
data-driven solver for the Fokker-Planck equation on N which drives any initial data ρ0 to the equilibrium 
density on N , ρN∞(y) ∝ e−UN (y) (after taking kT = 1). To study the trajectory of ρt driving any initial 
data ρ0 to the equilibrium density ρN∞(y), it is sufficient to solve the following Fokker-Planck equation on 
manifold N

∂tρ
N
t = divN (∇NρNt + ρNt ∇NUN ). (3.1)

For notational simplicity, in the remainder of this section, we will denote the equilibrium density for the 
Fokker-Planck equation (1.6) as π(y) := ρN∞(y).

As mentioned before, since we do not have exact information of N , the only implementable method is 
to use the data {yi}ni=1 ⊂ N to construct directly a good discrete approximation to the Fokker-Planck 
equation (3.1). We know that yi = Φ(xi), where Φ is the reaction coordinates defined in Definition 2.8 and 
{xi}ni=1 are the samples on M based on the density function ρ∗ in Assumption 2.1. Hence, {yi}ni=1 are 
the samples on N based on a density function ρ∗∗, where ρ∗∗ is the induced density function of ρ∗ by the 
reaction coordinates Φ. Since ρ∗ has an upper bound and a positive lower bound, ρ∗∗ also has an upper 
bound and a positive lower bound. It can be proved that {yi}ni=1 are well-distributed on N when they are 
sampled based on a density function with such bounds [55,41].

In Section 3.1, we will construct a Voronoi tessellation for N from {yi}ni=1 ⊂ N and then assign the 
transition probability for an approximated Markov process on {yi}ni=1 between the nearest neighbor points. 
This transition probability with detailed balance property also gives a finite volume scheme for solving the 
Fokker-Planck equation (3.1). We give the stability and convergence analysis for this scheme in Section 3.3. 
However, without the exact metric on N , to propose an implementable scheme, the Voronoi tessellation 
needs to be further approximated. In Section 3.4, thanks to the metric on N induced by the low dimensional 
Euclidean distance in R�, the volumes of the Voronoi cells and the areas of the Voronoi faces can be 
further approximated by polygons in its tangent plane in R� with high order accuracy. Therefore the new 
transition probability based on polygons can be assigned and leads to an implementable finite volume 
scheme for Fokker-Planck equation (3.1); see Theorem 3.14. In Section 3.5, we provide an unconditionally 
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stable explicit time discretization for the finite volume scheme based on the detailed balance property of 
the Markov process, which satisfies a mass conservation law and exponentially converges to the equilibrium. 
As a consequence, we obtained an approximated Markov process on {yi}ni=1, i.e., random walk between 
the nearest neighbor points with an approximated transition probability and jump rate that enjoys good 
properties such as the conservation of mass, L1 contraction for the forward equation, L∞ maximal principle 
for the backward equation and the L2 error estimates.

3.1. Construction of the Voronoi tessellation and the finite volume scheme on manifold N

In this section, we construct a finite volume scheme based on the Voronoi tessellation for manifold N . 
We will see the advantage is that the Voronoi tessellation automatically gives a positivity-preserving finite 
volume scheme for the Markov process with detailed balance; see Lemma 3.4.

Suppose (N , dN ) is a d dimensional smooth closed submanifold of R� and dN is induced by the Euclidean 
metric in R�. Let S ⊂ N . We have

Hk
δ (S) = inf{

∞∑
i=1

diam(Ui)k, S ⊂ ∪∞
i=1Ui,diam(Ui) < δ}, (3.2)

where the infimum is taken over all countable covers of S in N and the diameter of the set Ui is measured 
in metric dN . Then, the k dimensional Hausdorff measure Hk(S) of S in N is defined as

Hk(S) = lim
δ→0

Hk
δ (S). (3.3)

For the samples {yi}ni=1 ⊂ N , we define the Voronoi cell as

Ci := {y ∈ N ; dN (y,yi) ≤ dN (y,yj) for all yj , j = 1, · · · , n}, (3.4)

with the volume |Ci| = Hd(Ci). Then N = ∪n
i=1Ci is a Voronoi tessellation of manifold N . Denote the 

Voronoi face for cell Ci as

Γij := Ci ∩ Cj , and its area as |Γij | = Hd−1(Γij) (3.5)

for any j = 1, · · · , n. If Γij = ∅ or i = j then we set |Γij | = 0. We define the bisector between yi and yj to 
be the set

Gij := {y ∈ N ; dN (y,yi) = dN (y,yj)}. (3.6)

Obviously, we have Γij ⊂ Gij .
Define the associated adjacent sample points as

VF(i) := {j; Γij �= ∅}. (3.7)

First, we have the following basic facts about the Voronoi cells on a manifold.

Proposition 3.1. If Ci is the Voronoi cell containing the yi and Ci is contained in the geodesic ball centered 
at yi whose radius is equal to the injectivity radius of N at yi, then Ci is star shaped.

Proof. For any y ∈ Ci, if there is a point y′ on the minimizing geodesic between y and yi such that 
y′ /∈ Ci and y′ ∈ Cj , then dN (y′, yj) < dN (y′, yi). Therefore, we have dN (y, yj) ≤ dN (y, y′) +dN (y′, yj) <
dN (y, y′) +dN (y′, yi) = dN (y, yi). This contradicts to y ∈ Ci. Hence, any point on the minimizing geodesic 
between y and yi is in Ci. �
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Fig. 1. An example in which the bisector between two points is not a submanifold.

Note that the above fact holds regardless how {yi}ni=1 are sampled.

Next, we want to discuss the geometric properties of the Voronoi faces. We start from the bisector between 
two points. A natural question is whether a bisector between two points on a closed d dimensional manifold 
is a d − 1 dimensional submanifold. Unfortunately, the answer is negative for two arbitrary points due to 
the topological and geometrical structure of the manifold. In Fig. 1, we show an example that on a manifold 
diffeomorphic to a torus, the bisector between two points A and B is a figure “8” curve. There are special 
cases when the bisector between any two points is a submanifold globally. In [5], the author proves that 
any bisector between two points is a totally geodesic submanifold if and only if the manifold has constant 
curvature. An obvious example of this case is the round sphere, where any bisector is a great hypersphere. 
Hence, on the round sphere, any Voronoi surface is a part of a great hypersphere.

In this work, we prove the following local regularity result for the bisectors on any manifold. In fact, 
we show that when two points are close enough, then an open neighborhood on the bisector around the 
midpoint of the minimizing geodesic connecting those two points is a d − 1 dimensional submanifold. The 
proof of the proposition with a figure to illustrate the statement of the proposition is in Appendix B.

Proposition 3.2. Suppose δ is small enough depending on the bounds of the sectional curvatures and the 
injectivity radius of N . For any yi ∈ N , let Bδ(yi) be an open geodesic ball of radius δ at yi. Suppose 
yj ∈ Bδ(yi) and Gij is the bisector between yi and yj. Then, Mij = Bδ(yi) ∩ Gij is a d − 1 dimensional 
submanifold. Let y∗ be the midpoint of the minimizing geodesic between yi and yj. Then y∗ ∈ Mij and the 
minimizing geodesic between yi and yj is perpendicular to Mij at y∗.

Since {yi}ni=1 are sampled based on a density function ρ∗∗ with a positive lower bound, when n is large 
enough, with high probability, there are enough points in a small geodesic ball. Hence, we can assume 
that each Voronoi cell is small enough so that it is contained in a geodesic ball. We propose the following 
assumption.

Assumption 3.3. For δ defined in Proposition 3.2, let B δ
2
(yi) be an open geodesic ball centered at yi with 

radius δ2 . We assume that when n is large enough, we have Ci ⊂ B δ
2
(yi) for i = 1, · · · , n.

Suppose Γij is the Voronoi face between yi and yj , Assumption 3.3 implies that yj ∈ Bδ(yi). Based on 
Assumption 3.3 and Proposition 3.2, the interior of the Voronoi face Γij is an open subset of a submanifold 
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Mij . Hence, there is a well defined unit outward normal vector field n on each ∂Ci and we can apply the 
divergence Theorem on each Voronoi cell.

Recall the Fokker-Planck equation on N (3.1). We first recast (3.1) in the relative entropy form

∂tρ
N
t = divN

(
π∇N

(
ρNt
π

))
. (3.8)

We drop the dependence t, N in the short hand notation ρ = ρNt . We integrate this on Ci and use the 
divergence theorem on cell Ci to obtain

d
dt

∫
Ci

ρHd(Ci) =
∑

j∈VF(i)

∫
Γij

πn · ∇N
( ρ
π

)
Hd−1(Γij), (3.9)

where n is the unit outward normal vector field on ∂Ci.
To design the numerical algorithm, first, let us clarify the probability on each cell. Then the probability 

in Ci can be approximated as
∫
Ci

ρ(y)Hd(Ci) ≈ ρ(yi)(1 + diam(Ci))|Ci|. (3.10)

Second, we use ρi to approximate the exact solution ρ(yi) on each cell Ci. Let πi be the approximated 
equilibrium density at yi satisfying 

∑n
i=1 πi|Ci| = 1. Notice ρ∞(y) ∝ e−UN (y), so πi > 0 for all i. Then the 

surface gradient in (3.9) can be approximated by

∑
j∈VF(i)

∫
Γij

πn · ∇N
( ρ
π

)
Hd−1(Γij) ≈

1
2

∑
j∈VF(i)

πi + πj

|yi − yj |
|Γij |

(
ρj
πj

− ρi
πi

)
. (3.11)

Therefore, combining (3.10) and (3.11), we give the following finite volume scheme. For i = 1, · · · , n,

d
dtρi|Ci| = 1

2
∑

j∈VF(i)

πi + πj

|yi − yj |
|Γij |

(
ρj
πj

− ρi
πi

)
. (3.12)

Let χCi
be the characteristic function such that χCi

= 1 for y ∈ Ci and 0 otherwise. Then

ρapprox(y) :=
n∑

i=1
ρiχCi

(y)

is the piecewise constant probability distribution on N provided 
∑n

i=1 ρi|Ci| = 1 and ρi ≥ 0. We will 
prove later in the convergence analysis Theorem 3.7 that the exact solution ρ can be approximated by the 
numerical piecewise constant probability distribution constructed from ρi, i = 1, · · · , n.

We will first formulate finite volume scheme (3.12) as the forward equation for a Markov process with 
basic properties such as ergodicity in Section 3.2. We then show the truncation error analysis and stability 
analysis and thus convergence of the scheme (3.12) later in Section 3.3.

3.2. Associated Markov process, detailed balance and ergodicity

We will first formulate finite volume scheme (3.12) as the forward equation for a Markov process and 
then in Proposition 3.5, we study the generator of the Markov process, which leads to ergodicity of ρi(t) . 
πi
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Roughly speaking, the forward equation leads to the conservation law while the backward equation leads to 
maximum norm estimates for ρi

πi
.

Lemma 3.4. Let πi > 0 for all i = 1, · · · , n. The finite volume scheme (3.12) is the forward equation for a 
Markov Process with transition probability Pji (from state j to i) and jump rate ηj

d
dtρi|Ci| =

( ∑
j∈VF(i)

ηjPjiρj |Cj |
)
− ηiρi|Ci|, (3.13)

where

ηi =
∑
j �=i

Qij =: 1
2|Ci|πi

∑
j∈VF(i)

πi + πj

|yi − yj |
|Γij | > 0, i = 1, 2, · · · , n;

Pij :=

⎧⎪⎪⎨
⎪⎪⎩

Qij

ηi
= 1

ηi

πi + πj

2πi|Ci|
|Γij |

|yi − yj |
, j ∈ VF(i);

0, j /∈ VF(i).

(3.14)

(i) P is transition probability matrix satisfying 
∑

j Pij = 1 and the detailed balance property

Pjiηjπj |Cj | = Pijηiπi|Ci| = πi + πj

2
|Γij |

|yi − yj |
∀i, j. (3.15)

(ii) With {wi}ni=1 := {ρi|Ci|}ni=1, we recast the forward equation (3.13) as

d
dtw = Q∗w, (3.16)

where Q∗ is the transpose of Q-matrix defined as

Q = (aij)n×n, aij :=
{

−ηi, j = i;
ηiPij , j �= i.

(3.17)

(iii)
∑n

i=j aij = 0, which gives the conservation law for 
∑

i wi

d
dt

n∑
i=1

wi =
n∑

i=1

n∑
j=1

ajiwj = 0; (3.18)

(iv) We have the dissipation relation for χ2-divergence

d
dt

∑
i

ρ2
i

πi
|Ci| = −

∑
i,j

πi + πj

2
|Γij |

|yi − yj |

(
ρj
πj

− ρi
πi

)2

. (3.19)

Proof. First, one can rewrite (3.12) as (3.13) with ηi = 1
2|Ci|πi

∑
j∈VF(i)

πi+πj

|yi−yj | |Γij | and Pjiηj =
πi+πj

2|yi−yj |
|Γij |
πj |Cj | . Then since πi+πj

|yi−yj | |Γij | is symmetric, we have

d
dt (

n∑
|Ci|ρi) =

∑ 1
2
πi + πj

|yi − yj |
|Γij |

(
ρj
πj

− ρi
πi

)
= 0. (3.20)
i=1 i,j
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Second we can check

∑
i

Pji =
∑

i∈VF(j)

Pji = 1
ηj

∑
i∈VF(j)

πi + πj

2|yi − yj |
|Γij |
πj |Cj |

= 1. (3.21)

Third the detailed balance property comes from the symmetric property of πi+πj

|yi−yj | |Γij | and

ηjPjiπj |Cj | = πi + πj

2|yi − yj |
|Γij | = ηiPijπi|Ci|. (3.22)

Next, the conservation law follows directly from 
∑n

i=1 aji = 0 by (3.17) and (3.21). Denote the diagonal 
rate matrix as R = diag(ηj), then we obtain Q-matrix Q = R(P − I).

Finally, by detailed balance property (3.15) and 
∑

j Pij = 1, we recast (3.13) as

d
dtρi|Ci| =

∑
j∈VF(i)

ηiPijπi|Ci|
ρj
πj

− ηiπi|Ci|
ρi
πi

=
∑

j∈VF(i)

ηiπi|Ci|Pij

(
ρj
πj

− ρi
πi

)
=

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ρj
πj

− ρi
πi

) (3.23)

Multiplying this by ρi

πi
and show that

d
dt

∑
i

ρ2
i

πi
|Ci| = −

∑
i,j

πi + πj

2
|Γij |

|yi − yj |

(
ρj
πj

− ρi
πi

)2

. (3.24)

This gives the dissipation relation (3.19). �
Proposition 3.5. Let πi > 0 for all i = 1, · · · , n. Let Q := (aij)n×n be the Q-matrix defined in (3.17). Then 
{ui}ni=1 := { ρi

πi
}ni=1 is the solution to the backward equation

d
dtu = Qu. (3.25)

Moreover, let ηi be the jump rate defined in (3.14). We conclude 0 is the simple, principle eigenvalue of Q
with the ground state {1, 1, · · · , 1}. We thus have the exponential decay of ρi(t) with respect to time t,

max
i

|ρi(t) − πi|
πi

≤ ce−(λ1−|λ2|)t, (3.26)

where λ1 > maxi ηi is the principle eigenvalue of λI + Q, |λ2| < λ1 is the second largest eigenvalue of 
λ1I + Q, and λ1 − |λ2| > 0 is the spectral gap of λ1I + Q.

Proof. Recall (3.23). We recast the forward equation (3.13) as

d
dtρi|Ci| =

∑
j∈VF(i)

ηiPijπi|Ci|
ρj
πj

− ηiπi|Ci|
ρi
πi

, (3.27)

which gives

d
dt

ρi
πi

=
∑

ηiPij
ρj
πj

− ηi
ρi
πi

. (3.28)

j∈VF(i)
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Next, we show {ui}ni=1 := { ρi

πi
}ni=1 is the solution to this backward equation. Recast (3.28) as

d
dtui =

n∑
j=1

aijuj . (3.29)

Here Q = {aij} is the generator of the backward equation

d
dtu = Qu. (3.30)

One can check 
∑n

j=1 aij = 0, aij ≥ 0 for j �= i and aii < 0.
Moreover, due to the detailed balance property (3.15), we know Q is self-adjoint in the weighted l2-space

〈u,Qv〉π|C| :=
∑
i,j

uiaijvjπi|Ci| =
∑
i,j

ajiuivjπj |Cj | =: 〈Qu, v〉π|C|. (3.31)

Thus we know the eigenvalues of Q are real. For the matrix λ1I + Q with λ1 > maxi ηi, we know each 
element is non-negative and λ1 +

∑n
j=1 aij = λ1 > 0. Since the Voronoi tessellation N = ∪n

i=1Ci, when N
is strongly connected, λ1I + Q is irreducible. By the Perron-Frobenius theorem for λ1I + Q, we know the 
Perron–Frobenius eigenvalue (i.e. the principal eigenvalue) of λ1I+Q is λ1 and λ1 > 0 is a simple eigenvalue 
with the ground state u∗ := (1, 1, · · · , 1) and other eigenvalues λi of λ1I + Q satisfy |λi| < λ1. Therefore, 
we have

λ1(u− u∗) + d
dt (u− u∗) = (λ1I + Q)(u− u∗). (3.32)

Let ‖ · ‖ be the weighted l2 norm defined as ‖v‖2 :=
∑

i v
2
i πi|Ci|. Taking weighted inner product of (3.32)

with u − u∗ and from 〈u − u∗, u∗〉π|C| = 0, we have

λ1‖u− u∗‖2 + 1
2

d
dt (‖u− u∗‖2) = 〈(λ1I + Q)(u− u∗), u− u∗〉π|C| ≤ |λ2|‖u− u∗‖2, (3.33)

where we used |λ2| < λ1 is the second largest eigenvalue of λ1I + Q. This gives

d
dt‖u− u∗‖ ≤ (|λ2| − λ1)‖u− u∗‖. (3.34)

Therefore we obtain the exponential decay of u to its ground state u∗

‖u− u∗‖ ≤ ce(|λ2|−λ1)t. (3.35)

Here λ1 − |λ2| > 0 is the spectral gap of λ1I + Q. �
We refer to [39] for the ergodicity of finite volume schemes in an unbounded space. We refer to [42,13,44,

24,25,29] for more discussions on the corresponding generalized gradient flow of the relative entropy with 
graph Wasserstein distance on discrete space and Benamou-Brenier formula. See also [38,57,30] for some 
related data-driven algorithms when solving equations on a network graph and for irreversible processes.

3.3. Truncation error estimate, stability and convergence of the finite volume scheme (3.12)

In this section we prove the stability of (3.12) in Lemma 3.6. Then we obtain the convergence of the 
solution to finite volume scheme (3.12) to the solution of Fokker-Planck equation (3.1) in Theorem 3.7.
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First, we have the following stability property, which corresponds to the Markov chain version of the 
Crandall-Tartar lemma for monotone schemes. This lemma is also known as the total variation diminishing 
for two density solutions.

Lemma 3.6. Any two solutions ρi and ρ̃i to finite volume scheme (3.13) have the following stability properties

d
dt

n∑
i=1

|ρi − ρ̃i||Ci| ≤ 0;

d
dt

n∑
i=1

|ρ̇i| |Ci| ≤ 0,
(3.36)

where ρ̇i is the time derivative of ρi(t).

Proof. First assume ρi and ρ̃i are two solutions to finite volume scheme (3.13). We have

d
dt (ρi|Ci| − ρ̃i|Ci|) =

∑
j∈VF(i)

Pjiηj |Cj |(ρj − ρ̃j) − ηi|Ci|(ρi − ρ̃i). (3.37)

Notice that for any function u, multiplying u by its sign gives an absolute value |u|. From [34, Lemma 7.6], 
the derivative of |u| equals the derivative of u multiplied by the sign of u, i.e., D|u| = sgn(u)Du. Multiply 
sgn(ρi − ρ̃i) to both sides and then take summation with respect to i

d
dt

n∑
i=1

|Ci||ρi − ρ̃i| ≤
∑
i,j

Pjiηj |Cj ||ρj − ρ̃j | −
n∑

i=1
ηi|Ci||ρi − ρ̃i| = 0, (3.38)

where we used 
∑

i∈VF(j) Pji = 1. Second, take time derivative in (3.13), then we have

d2

dt2 ρi|Ci| =
∑

j∈VF(i)

Pjiηj |Cj |ρ̇j − ηi|Ci|ρ̇i. (3.39)

Then similarly we can multiply sgn(ρ̇i) to both sides and obtain

d
dt

n∑
i=1

|Ci||ρ̇i| ≤
∑
i,j

Pjiηj |Cj ||ρ̇j | −
n∑

i=1
ηi|Ci||ρ̇i| = 0, (3.40)

where we used 
∑

i∈VF(j) Pji = 1. �
We conclude this section by the following convergence theorem in the weighted L2 sense. Although the 

proof of the convergence theorem is rather standard, cf. [26], however the error estimation on manifold 
requires some careful treatments for the symmetric cancellation and some approximation lemmas for the 
Voronoi tessellation.

Theorem 3.7 (Convergence). Suppose ρ(y, t), t ∈ [0, T ] is a smooth solution to Fokker-Planck equation (3.1)
on manifold N ⊂ R� with initial density ρ0(y). Let N = ∪n

i=1Ci be the Voronoi tessellation of manifold N
based on {yi}ni=1. Let

h = max
(

max
i=1,...,n

(diam(Ci)), max
i=1,...,n

( max
j∈VF(i)

dN (yi,yj))
)

(3.41)



Y. Gao et al. / Appl. Comput. Harmon. Anal. 62 (2023) 261–309 277
Let {ρi}ni=1 be the solution to the finite volume scheme (3.12) with initial data {ρ0
i }ni=1 and ei := ρ(yi) − ρi. 

Under Assumption 3.3, we have the following error estimate

max
t∈[0,T ]

∑
i

ei(t)2
|Ci|
πi

≤
(∑

i

ei(0)2 |Ci|
πi

+ O(h2(nhmax
i

|∂Ci| + 1))
)
eT , (3.42)

where the constant in O(h2(nh maxi |∂Ci| + 1)) depends on Vol(N ), the minimum of π, the C1 norm of π, 
the L∞ norm of ∂t∇Nρ and the C2 norm of ρ

π .

Proof. Let ρei := 1
|Ci|

∫
Ci

ρ dy be the cell average. Plug the exact solution into the numerical scheme

∂t(ρei |Ci|) =
∑

j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ρ(yj)
πj

− ρ(yi)
πi

)
+

∑
j∈VF(i)

εij ,

εij :=
∫

Γij

πnij · ∇N
ρ

π
dHd−1 − πi + πj

2|yi − yj |
|Γij |

(
ρ(yj)
πj

− ρ(yi)
πi

)
,

(3.43)

where nij is the restriction of the unit outward normal vector field on Γij. Exchanging i, j above, we can 
see that εij is anti-symmetric.

Subtracting the numerical scheme (3.12) from (3.43), we have

d
dt (ei|Ci|) =

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ej
πj

− ei
πi

)
+

∑
j∈VF(i)

εij + ∂t((ρ(yi) − ρei )|Ci|). (3.44)

Similar to the dissipation relation (3.19), multiplying eiπi
shows that

d
dt

∑
i

e2
i

|Ci|
πi

= −
∑
i

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ej
πj

− ei
πi

)2

+
∑
i

∑
j∈VF(i)

2εij
ei
πi

+
∑
i

2∂t(ρ(yi) − ρei )ei
|Ci|
πi

.

(3.45)
Since εij is anti-symmetric,

d
dt

∑
i

e2
i

|Ci|
πi

= −
∑
i

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ej
πj

− ei
πi

)2

+
∑
i

∑
j∈VF(i)

εij

(
ei
πi

− ej
πj

)
+
∑
i

2∂t(ρ(yi) − ρei )ei
|Ci|
πi

.

(3.46)

Applying Young’s inequality to the last two terms, we have

∑
i

∑
j∈VF(i)

εij

(
ei
πi

− ej
πj

)

≤ 1
2
∑
i

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ej
πj

− ei
πi

)2

+ 1
2
∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γij |
;

(3.47)

∑
i

2∂t(ρ(yi) − ρei )ei
|Ci|
πi

≤
∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

+
∑
i

e2
i

|Ci|
πi

. (3.48)

Thus we have
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d
dt

∑
i

e2
i

|Ci|
πi

≤− 1
2
∑
i

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γij |

(
ej
πj

− ei
πi

)2

+ 1
2
∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γij |
(3.49)

+
∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

+
∑
i

e2
i

|Ci|
πi

≤
∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γij |
+
∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

+
∑
i

e2
i

|Ci|
πi

.

Next, we bound the term 
∑

i

∑
j∈VF(i)

ε2ij
πi+πj

2|yi−yj |
|Γij |

.

Let Gij be the bisector between yi and yj . Suppose y∗ is the intersection point of the minimizing 
geodesic from yi to yj and Gij . We have dN (y∗, yi) = dN (y∗, yj). Suppose T is the unit tangent vector of 
the minimizing geodesic at y∗. From the Taylor expansion of ρπ along the geodesic, we have

ρ

π
(yj) −

ρ

π
(y∗) = T · ∇N

ρ

π
(y∗)dN (y∗,yj) + O(d2

N (y∗,yj)), (3.50)
ρ

π
(y∗) − ρ

π
(yi) = T · ∇N

ρ

π
(y∗)dN (y∗,yi) + O(d2

N (y∗,yi)). (3.51)

By Assumption 3.3 and Proposition 3.2, nij can be extended to a unit normal vector field on the d − 1
dimensional submanifold Mij ⊂ Gij . We also call the extension to be nij . We have T = nij(y∗). Therefore, 
if we add the above two equations, we have

ρ

π
(yj) −

ρ

π
(yi) = nij · ∇N

ρ

π
(y∗)dN (yi,yj) + O(d2

N (yi,yj)). (3.52)

Hence,

nij · ∇N
ρ

π
(y∗) =

ρ(yj)
πj

− ρ(yi)
πi

dN (yi,yj)
+ O(dN (yi,yj)) =

ρ(yj)
πj

− ρ(yi)
πi

|yi − yj |
+ O(dN (yi,yj)), (3.53)

where we apply Lemma 3.9 in the last step. Similarly,

π(yj) − π(y∗) = O(dN (y∗,yj)), (3.54)

π(y∗) − π(yi) = O(dN (y∗,yi)). (3.55)

Hence,

π(y∗) = πi + πj

2 + O(dN (yi,yj)). (3.56)

Therefore,

π(y∗)nij · ∇N
ρ

π
(y∗) = πi + πj

2

ρ(yj)
πj

− ρ(yi)
πi

|yi − yj |
+ O(dN (yi,yj)). (3.57)

For any y on Γij ,

π(y)nij · ∇N
ρ

π
(y) =π(y∗)n · ∇N

ρ

π
(y∗) + O(dN (y,y∗)) (3.58)

=π(y∗)n · ∇N
ρ

π
(y∗) + O(dN (yi,y) + dN (yi,yj))

=π(y∗)n · ∇N
ρ

π
(y∗) + O(diam(Ci) + dN (yi,yj)), (3.59)
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where diam(Ci) is the diameter of Ci measured with respect to the distance in N . Thus,

π(y)nij · ∇N
ρ

π
(y) = πi + πj

2

ρ(yj)
πj

− ρ(yi)
πi

|yi − yj |
+ O(diam(Ci) + dN (yi,yj)). (3.60)

We conclude that

εij = O((diam(Ci) + dN (yi,yj))|Γij |). (3.61)

Therefore,

ε2
ij

πi+πj

2|yi−yj | |Γij |
= O(dN (yi,yj)(diam(Ci) + dN (yi,yj))2|Γij |). (3.62)

If we sum up all j ∈ VF(i),

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γij |
= max

j∈VF(i)
dN (yi,yj)(diam(Ci) + dN (yi,yj))2O(|∂Ci|). (3.63)

Hence,

∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γij |
= O(nh3 max

i
|∂Ci|), (3.64)

where the constant depends on the minimum of π, the C1 norm of π and the C2 norm of ρπ .
Next, we bound 

∑
i[∂t(ρ(yi) − ρei )]2

|Ci|
πi

. Notice that

∂t(ρ(yi) − ρei ) = O(diam(Ci)) = O(h), (3.65)

where the constant depends on the L∞ norm of ∂t∇Nρ. Since 
∑

i |Ci| = Vol(N ),

∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

= O(h2), (3.66)

where the constant depends on the L∞ norm of ∂t∇Nρ, Vol(N ) and minimum of π. Hence,

d
dt

∑
i

e2
i

|Ci|
πi

≤ O(h2(nhmax
i

|∂Ci| + 1)) +
∑
i

e2
i

|Ci|
πi

. (3.67)

In conclusion,

max
t∈[0,T ]

∑
i

ei(t)2
|Ci|
πi

≤
(∑

i

ei(0)2 |Ci|
πi

+ O(h2(nhmax
i

|∂Ci| + 1))
)
eT . � (3.68)

3.4. Approximation of Voronoi cells on manifold

Recall that {yi}ni=1 are samples on the smooth closed submanifold N in R� based on the density function 
ρ∗∗. In this section, we introduce an algorithm to approximate the volumes of the Voronoi cells and the 
areas of the Voronoi faces constructed from {yi}ni=1.

First, we need the following definition.
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Definition 3.8. For any 0 < r < 1 and yk ∈ {yi}ni=1, suppose BR�
√
r
(yk) ∩ {yi}ni=1 = {yk,1, · · · , yk,N̄k

}. We 
define the discrete local covariance matrix at yk,

Cn,r(yk) := 1
n

N̄k∑
i=1

(yk,i − yk)(yk,i − yk)� ∈ R�×�. (3.69)

Suppose {βn,r,1, · · · , βn,r,d} are the first d orthonormal eigenvectors corresponding to Cn,r(yk)’s largest d
eigenvalues. Define a map ιk(u) : R� → Rd as

ιk(u) := (u�βn,r,1, · · · , u�βn,r,d). (3.70)

For any y ∈ R�, define ι̃k(y) = ιk(y − yk).

Based on the above definition, we propose the following algorithm to find the approximated volumes |C̃k|
of the Voronoi cells Ck and the approximated areas |Γ̃k�| of the Voronoi faces Γk�.

Algorithm 1: Approximation of the Voronoi cell.
Parameters : Algorithm inputs are the bandwidth r and the threshold s

1 Choose 0 < r < 1. For each yk ∈ {yi}n
i=1, find

B
R�
√

r(yk) ∩ {yi}n
i=1 =: {yk,1, · · · ,yk,N̄k

}, B
R�

r (yk) ∩ {yi}n
i=1 =: {yk,1, · · · ,yk,Nk

}.

2 Construct the matrix Cn,r(yk) as in (3.69) by using the {yk,1, · · · , yk,N̄k
}. Find the orthonormal eigenvectors 

corresponding to Cn,r(yk)’s largest d eigenvalues. Denote them as {βn,r,1, · · · , βn,r,d}.
3 Use {βn,r,1, · · · , βn,r,d} to construct ι̃k as in (3.70). Find vk,i = ι̃k(yk,i), for i = 1, · · · , Nk.
4 Find the Voronoi cell decomposition of {0, vk,1, · · · , vk,Nk

} in Rd. Denote the Voronoi cell containing 0 to be C̃k,0 and the 
Voronoi cell containing vk,i to be C̃k,i. Denote the face F̃k,i = C̃k,0 ∪ C̃k,i.

5 Find the approximation of |Ck| as

|C̃k| := |C̃k,0| := Hd(C̃k,0). (3.71)

6 Find |F̃k,i| = Hd−1(F̃k,i). Define Γ̃ ∈ Rn×n such that

Ak� :=
Ãk� + Ã�k

2
, Ãk� =

{
|F̃k,i| if y� = yk,i ∈ BR�

r (yk) ;
0 otherwise.

(3.72)

7 If Ak� ≥ s, then |Γ̃k�| = Ak�. Otherwise |Γ̃k�| = s. Then |Γ̃k�| is an approximation of |Γk�|.

The idea of the above algorithm can be summarized as follows. For each yk, by using the points in a 
larger ball BR�

√
r
(yk), we construct the matrix Cn,r(yk). Then, the first d orthonormal eigenvectors will be an 

approximation of an orthonormal basis of Tyk
N . Next, we project the points in a smaller ball BR�

r (yk) onto 
this tangent space approximation. Now the points around yk are projected into a d dimensional Euclidean 
space and yk is projected to the origin. If we find the Voronoi cell around the origin in the Euclidean space, 
then it gives the approximation of the Voronoi cell around yk in N . Obviously, the better estimation of the 
tangent space we have, there are smaller errors in the approximation of the volumes of the Voronoi cells 
and the areas of the Voronoi faces.

Next, we provide a justification of the above algorithm. When the geodesic distance between two points 
on N is small, the next lemma relates the Euclidean distance and the geodesic distance between them. The 
proof can be found in Lemma B.3 in [56].
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Lemma 3.9. Suppose y, y′ ∈ N such that dN (y, y′) is small enough. Then

‖y′ − y‖R� = dN (y,y′)(1 + O(d2
N (y,y′))), (3.73)

where the constant in O(d2
N (y, y′)) depending on the second fundamental form of N in R� at y.

The above lemma implies that if r is small enough, then for all yk and any y ∈ BR�

r (yk) ∩N , there is a 
constant D1 > 1 depending on the second fundamental form of N in R�, such that

dN (y,yk) ≤ D1‖yk − y‖R� . (3.74)

We further make the following assumption about the Voronoi cells and the distribution of {yi}ni=1 on N .

Assumption 3.10. For n large enough, there exists r depending on n such that nrd is bounded from above 

and has a positive lower bound for all n and nr
d
2

logn → ∞ as n → ∞. Moreover, when n is large enough, the 
following conditions about r hold for any yk:

(1) Suppose BR�

r (yk) ∩ {yi}ni=1 = {yk,1, · · · , yk,Nk
}. We have Ck ⊂ BR�

r (yk). Moreover, if Γkj is a Voronoi 
surface of Ck between yk and yj , then yj ∈ BR�

r (yk). Suppose yj = yk,m, then we introduce the 
notation Γk,m = Γkj .

(2) For any i = 1, · · ·Nk, there is a constant D2 < 1 such that dN (yk,i, yk) ≥ D2r.

Next, we intuitively explain the relation between Assumption 3.10 and Algorithm 1. Recall that {yi}ni=1
are sampled based on a density function ρ∗∗ with a positive lower bound and upper bound. In Algorithm 1, 
we use the points in a larger ball BR�

√
r
(yk) to approximate the tangent space Tyk

N . Since ρ∗∗ has a positive 

lower bound, the condition nr
d
2

logn → ∞ as n → ∞ implies that the number of points in BR�
√
r
(yk) goes to 

infinity as n goes to infinity. Hence, we can have a good estimation of the tangent space. The condition that 
nrd is bounded from above and has a positive lower bound for all n implies r → 0 as n → ∞. Since ρ∗∗

has an upper bound and a positive lower bound, it also implies that we will have enough but not too many 
points in the smaller ball BR�

r (yk). Hence, (1) and (2) become mild assumption with this relation between r
and n. In fact, since r → 0 as n → ∞, (1) says that the Voronoi cell is in a small ball BR�

r (yk). In (2), since 
there are not too many points in BR�

r (yk), it is reasonable to assume the distance between the points in 
BR�

r (yk) and yk has a lower bound D2r. With (1) and (2), we can show that the approximation to Voronoi 
cell in the tangent space is accurate enough for our analysis.

Consider the geodesic ball B δ
2
(yk) in Assumption 3.3. By Lemma 3.9, when r is small enough, we have 

BR�

r (yk) ∩N ⊂ B δ
2
(yi). Since r → 0 as n → ∞, we know that when n is large enough, (1) in Assumption 3.10

implies Assumption 3.3. Hence, when n is large enough, Assumption 3.10 with Proposition 3.2 implies that 
the interior of each Voronoi face of Ck is an open subset of a d − 1 dimensional submanifold.

The following lemma is a consequence of (2) in Assumption 3.10.

Lemma 3.11. Under Assumption 3.10, dN (∂Ck, yk) ≥ 1
2D2r. There are constants K1 and K2 depending on 

D1, D2 and the Ricci curvature of N , such that

K1r
d ≤ |Ck| ≤ K2r

d, (3.75)

Proof. Suppose Gk,i is the bisector between yk and yk,i. Then dN (Γk,i, yk) ≥ dN (Gk,i, yk) ≥ 1
2D2r. Hence, 

dN (∂Ck, yk) ≥ 1
2D2r. Therefore, each Ci contains a geodesic ball of radius 1

2D2r and is contained in the 
geodesic ball of radius D1r. By Lemma B.1 in [56] when r is small enough, the volume of a geodesic ball 
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of radius r can be bounded from below by K ′
1r

d and from above by K ′
2r

d where K ′
1 and K ′

2 depend on the 
Ricci curvature of N . The conclusion follows. �

In the next proposition, we show that |C̃k| is a good approximation of |Ck|. The proof of the proposition 
is in the Appendix.

Proposition 3.12. Let |C̃k| be the approximated volume of Ck in (3.71). If n is large enough, for r satisfying 
Assumption 3.10, with probability greater than 1 − 1

n2 , for all yk, we have |C̃k| = |C̃k,0| = |Ck|(1 + O(r)).

Since we are approximating the tangent plane of the manifold N , the error between |Γki| and |Γ̃ki| will 
not be much smaller than |Γki| itself when |Γki| is too small. However, in the next proposition, we show 
that if |Γki| is large enough, then |Γ̃ki| is a good approximation of |Γki|. The proof of the proposition is in 
the appendix.

Proposition 3.13. Let |Γ̃ki| be the approximated area of Γki in (3.72). If n is large enough, for r satisfying 
Assumption 3.10, let s = a1r

d in the last step of Algorithm 1 for some constant a1, with probability greater 
than 1 − 1

n2 , for all yk, we have

|Γki| = |Γ̃ki| + O(rd). (3.76)

Hence, if |Γki| ≥ a2r
d−1 for some constant a2, then

|Γki| = |Γ̃ki|(1 + O(r)). (3.77)

At last, if we use our approximation of the volumes of the Voronoi cells and the areas of the Voronoi 
faces in (3.12) we have the following implementable finite volume scheme based only on the collected dataset 
{yi} ⊂ N

d
dt ρ̃i|C̃i| = 1

2
∑

j∈VF(i)

πi + πj

|yi − yj |
|Γ̃ij |

(
ρ̃j
πj

− ρ̃i
πi

)
. (3.78)

Moreover, same as Lemma 3.4, we know the finite volume scheme (3.78) is the forward equation for a 
Markov Process with transition probability P̃ji and jump rate η̃i

d
dt ρ̃i|C̃i| =

∑
j∈VF(i)

η̃jP̃jiρ̃j |C̃j | − η̃iρ̃i|C̃i|, (3.79)

where for i = 1, · · · , n, j = 1, · · · , n,

η̃i := 1
2|C̃i|πi

∑
j∈VF(i)

πi + πj

|yi − yj |
|Γ̃ij |,

P̃ji := 1
η̃j

πi + πj

2πj |C̃j |
|Γ̃ij |

|yi − yj |
, j ∈ VF(i); P̃ji = 0, j /∈ VF(i).

(3.80)

Similar to Lemma 3.4, we know P̃ is the transition probability matrix with row sum 1. Denote the diagonal 
rate matrix as R̃ = diag(η̃j), then we also obtain an approximated Q-matrix Q̃ = R̃(P̃ − I). Notice πi > 0
for all i = 1, · · · , n, so we always have η̃i > 0 for all i. It also satisfies the detailed balance property

η̃jP̃jiπj |C̃j | = η̃iP̃ijπi|C̃i|, (3.81)
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conservation laws and the stability analysis in Lemma 3.6.
Now we state and prove the convergence of the implementable finite volume scheme (3.78). The bound 

of the error in the weighted �2 norm is summarized in the following theorem. Due to the estimation error 
in the Voronoi cells and faces, the error in Theorem 3.7 eT is replaced by e2T . Assume for i = 1, · · · , n, 
|VF(i)|, the cardinality of VF(i), is order 1.

Theorem 3.14. Suppose ρ(y, t), t ∈ [0, T ] is a smooth solution to the Fokker-Planck equation (3.1) on man-
ifold N ⊂ R� with initial density ρ0(y). Let {ρ̃i(t)}ni=1 be the solution of the finite volume scheme (3.78). 
Let ẽi := ρ(yi) − ρ̃i. If n is large enough, for r satisfying Assumption 3.10, we choose threshold s = a1r

d

for some constant a1 in Algorithm (1), with probability greater than 1 − 1
n2 , we have

max
t∈[0,T ]

∑
i

ẽi(t)2
|Ci|
πi

≤
(∑

i

ẽi(0)2 |Ci|
πi

+ cr
)
e2T , (3.82)

where c is a constant independent of r and n.

Proof. Define ρei := 1
|Ci|

∫
Ci

ρ dy. Plug the exact solution into the numerical scheme

∂t(ρei |Ci|) =
∑

j∈VF(i)

πi + πj

2|yi − yj |
|Γ̃ij |

(
ρ(yj)
πj

− ρ(yi)
πi

)

+
∑

j∈VF(i)

∫
Γij

πnij · ∇N
ρ

π
dHd−1 −

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γ̃ij |

(
ρ(yj)
πj

− ρ(yi)
πi

)
,

(3.83)

where nij is the restriction of the unit outward normal vector field on Γij. Subtracting the numerical scheme 
(3.78) from (3.83), we have

d
dt ẽi|Ci| =

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γ̃ij |

(
ẽj
πj

− ẽi
πi

)
+

∑
j∈VF(i)

εij + ∂t((ρ(yi) − ρei )|Ci|) + d
dt ρ̃i(|C̃i| − |Ci|),

(3.84)
where

εij :=
∫

Γij

πnij · ∇N
ρ

π
dHd−1 − πi + πj

2|yi − yj |
|Γij |

(
ρ(yj)
πj

− ρ(yi)
πi

)
(3.85)

+ πi + πj

2|yi − yj |
(|Γij | − |Γ̃ij |)

(
ρ(yj)
πj

− ρ(yi)
πi

)
.

Note that εij is anti-symmetric, hence by the same argument in Theorem 3.7, we have

d
dt

∑
i

ẽ2
i

|Ci|
πi

≤− 1
2
∑
i

∑
j∈VF(i)

πi + πj

2|yi − yj |
|Γ̃ij |

(
ẽj
πj

− ẽi
πi

)2

+ 1
2
∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γ̃ij |
(3.86)

+
∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

+
∑
i

( d
dt ρ̃i(

|C̃i| − |Ci|
|Ci|

)
)2 |Ci|

πi
+ 2

∑
i

e2
i

|Ci|
πi

≤
∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γ̃ij |
+
∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

+
∑( d

dt ρ̃i(
|C̃i| − |Ci|

|Ci|
)
)2 |Ci|

πi
+ 2

∑
e2
i

|Ci|
πi
i i
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= : ε1 + ε2 + ε3 + 2
∑
i

e2
i

|Ci|
πi

.

First, we estimate the term ε1, in particular, ε2ij
πi+πj

2|yi−yj |
|Γ̃ij |

for j ∈ VF(i). Since the exact solution is smooth 

such that

|ρ(yi, t) − ρ(yj , t)| ≤ CLip|yi − yj |, (3.87)

by (3.61),

εij = O((diam(Ci) + dN (yi,yj))|Γij |) + O(|Γij | − |Γ̃ij |). (3.88)

Hence,

ε2
ij

πi+πj

2|yi−yj | |Γ̃ij |
= O(dN (yi,yj)(diam(Ci) + dN (yi,yj))2

|Γij |2
|Γ̃ij |

) + O(dN (yi,yj)
(|Γij | − |Γ̃ij |)2

|Γ̃ij |
). (3.89)

Note that |Γ̃ij | ≥ s = a1r
d. Hence, by Proposition 3.13,

(|Γij | − |Γ̃ij |)2
|Γ̃ij |

= O(rd). (3.90)

By Assumption 3.10 and Lemma 3.9, dN (yi, yj) and diam(Ci) are of order r. By Assumption 3.10 and 

Proposition 3.2, since N is compact, there is a constant K such that |Γij | ≤ Krd−1. Therefore, ε2ij
πi+πj

2|yi−yj |
|Γ̃ij |

=

O(rd+1) and

ε1 =
∑
i

∑
j∈VF(i)

ε2
ij

πi+πj

2|yi−yj | |Γ̃ij |
= O(nrd+1 max

i
|VF(i)|) = O(rmax

i
|VF(i)|), (3.91)

where we use nrd goes to some constant in the last step.
Second, we estimate ε2 + ε3. By Proposition 3.12 and (3.75),

∑
i

( d
dt ρ̃i(

|C̃i| − |Ci|
|Ci|

)
)2 |Ci|

πi
= O(r2). (3.92)

By (3.66) and Assumption 3.10,

∑
i

[∂t(ρ(yi) − ρei )]2
|Ci|
πi

= O(r2). (3.93)

We sum up all the terms,

d
dt

∑
i

ẽ2
i

|Ci|
πi

≤ O(rmax
i

|VF(i)|) + 2
∑
i

e2
i

|Ci|
πi

. (3.94)

In conclusion

max
t∈[0,T ]

∑
ẽi(t)2

|Ci|
πi

≤
(∑

ẽi(0)2 |Ci|
πi

+ O(rmax
i

|VF(i)|)
)
e2T . � (3.95)
i i
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3.5. Unconditionally stable explicit time stepping and exponential convergence

To the end of this section, we show that the detailed balance property (3.81) leads to stability and 
exponential convergence of a discrete-in-time Markov process.

Under the detailed balance condition (3.81), we recast (3.79) to

d
dt

ρ̃i
πi

=
∑

j∈VF(i)

η̃iP̃ij
ρ̃j
πj

− η̃i
ρ̃i
πi

. (3.96)

Let ρki be the discrete density at the discrete time kΔt. To achieve both the stability and the efficiency, we 
introduce the following unconditional stable explicit scheme

ρk+1
i

πi
= ρki

πi
− η̃iΔt

ρk+1
i

πi
+ Δt

∑
j∈VF(i)

η̃iP̃ij

ρkj
πj

, (3.97)

where η̃i and P̃ij are defined in (3.80). The above equation is equivalent to

ρk+1
i

πi
= ρki

πi
+ η̃iΔt

1 + η̃iΔt

⎛
⎝ ∑

j∈VF(i)

P̃ij

ρkj
πj

− ρki
πi

⎞
⎠ . (3.98)

For uk+1
i := ρk+1

i

πi
, the matrix formulation of (3.98) is

uk+1 = (I + ΔtQ)uk, (3.99)

where

Q := {b̂ij} =
{

− η̃i

1+η̃iΔt , j = i;
η̃i

1+η̃iΔt P̃ij , j �= i
(3.100)

satisfies 
∑

j b̂ij = 0.
Below, we first summarize the explicit time stepping (3.97) as an algorithm and then prove the uncondi-

tionally stability.

Algorithm 2: Explicit time stepping for Markov process.
Parameters : Algorithm inputs: error tolerance ε, time step Δt, the initial distribution (ρ0

i ), the target invariant measure 
(πi), the approximated volume |C̃k| of Voronoi cell and ares |Γ̃k�|

1 Compute transition probability matrix P̃ij and η̃ defined in (3.80).
2 Compute discrete time transition probability matrix Q defined in (3.100).
3 k → k + 1 iteration: ρk+1

π = (I + ΔtQ) ρk

π . Repeat until ‖ ρk+1

π − 1‖∞ < ε.

Now we show Q defined in (3.100) is the generator of a new Markov process.
For wk+1

i := ρk+1
i |C̃i|, (3.97), together with detailed balance property (3.81), yields

ρk+1
i |C̃i| − ρki |C̃i| = Δt

⎛
⎝ ∑

j∈VF(i)

η̃jP̃jiρ
k
j |C̃j | − η̃iρ

k+1
i |C̃i|

⎞
⎠ , (3.101)

which can be recast as
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(1 + Δtη̃i)ρk+1
i |C̃i| = (1 + Δtη̃i)ρki |C̃i| + Δt

⎛
⎝ ∑

j∈VF(i)

η̃jP̃jiρ
k
j |C̃j | − η̃i|C̃i|ρki

⎞
⎠ . (3.102)

Denote gk+1
i := (1 + Δtη̃i)ρk+1

i |C̃i|. (3.102) can be simplified as

gk+1
i = gki + Δt

⎛
⎝∑

j

η̃j
1 + Δtη̃j

P̃jig
k
j − η̃i

1 + Δtη̃i
gki

⎞
⎠ . (3.103)

This is a new Markov process for gi with transition probability P̃ji and a new jump rate sj = η̃j

1+Δtη̃j
. With 

Q in (3.100), the matrix formulation for g is

gk+1 = (I + ΔtQ)∗gk. (3.104)

One can check (1 + Δtη̃i)πi|C̃i| is a new equilibrium.

Proposition 3.15. Assume πi > 0 for all i = 1, · · · , n. Let η̃i be the approximated jump rate and P̃ij be the 
approximated transition probability defined in (3.80). Let Δt be the time step and consider the explicit time 
stepping (3.97), i.e., Algorithm 2. Assume the initial data satisfies

∑
i

(1 + η̃iΔt)ρ0
i |C̃i| =

∑
i

(1 + η̃iΔt)πi|C̃i|. (3.105)

Then we have

(i) the conversation law for gk+1
i := (1 + Δtη̃i)ρk+1

i |C̃i|, i.e.

∑
i

(1 + ηiΔt)ρk+1
i |C̃i| =

∑
i

(1 + ηiΔt)ρki |C̃i|; (3.106)

(ii) the unconditional maximum principle for ρi

πi

max
i

ρk+1
j

πj
≤ max

j

ρkj
πj

. (3.107)

(iii) the �∞ contraction

max
i

∣∣∣∣∣ρ
k+1
i

πi
− 1

∣∣∣∣∣ ≤ max
i

∣∣∣∣ρkiπi
− 1

∣∣∣∣ ; (3.108)

(iv) the exponential convergence

∥∥∥∥ρkiπi
− 1

∥∥∥∥
�∞

≤ c|λ2|k, |λ2| < 1, (3.109)

where λ2 is the second eigenvalue (in terms of the magnitude) of I + ΔtQ, i.e. λ2 = 1 − gapQ Δt and 
gapQ is the spectral gap of Q.
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Proof. First, recast (3.98) as

ρn+1
i

πi
= 1

1 + η̃iΔt

ρni
πi

+ η̃iΔt

1 + η̃iΔt

⎛
⎝ ∑

j∈VF(i)

P̃ij

ρnj
πj

⎞
⎠ , (3.110)

which gives the unconditional maximum principle (3.107).
Second, from (3.110), we have

ρk+1
i

πi
− 1 = 1

1 + η̃iΔt

(
ρki
πi

− 1
)

+ η̃iΔt

1 + η̃iΔt

∑
j∈VF(i)

P̃ij

(
ρkj
πj

− 1
)
. (3.111)

Then we have∣∣∣∣∣ρ
k+1
i

πi
− 1

∣∣∣∣∣ ≤ 1
1 + η̃iΔt

∣∣∣∣ρkiπi
− 1

∣∣∣∣+ η̃iΔt

1 + η̃iΔt

∑
j∈VF(i)

P̃ij

∣∣∣∣∣ρ
k
j

πj
− 1

∣∣∣∣∣ ≤ max
i

∣∣∣∣ρnjπj
− 1

∣∣∣∣ , (3.112)

which gives (3.108).
Third, recall the matrix formulation (3.99). Every element in (I +ΔtQ)m is strictly positive for some m. 

By Perron-Frobenius theorem, λ1 = 1 is the simple, principal eigenvalue of I + ΔtQ with the ground state 
u∗ ≡ {1, 1, · · · , 1} and other eigenvalues λi satisfy |λi| < λ1. On one hand, the mass conservation for initial 
data u0 = ρ0

π satisfies (3.106), i.e.,

∑
i

(u0
i − u∗

i )u∗
i (1 + Δtηi)π|C̃|i = 0. (3.113)

On the other hand, I +ΔtQ is self-adjoint operator in the weighted l2((1 +Δtλ)π|C|) space, we can express 
u0 using

u0 − u∗ =
∑
j=2

cjuj , uj is the eigenfunction corresponding to λj . (3.114)

Therefore, we have

uk − u∗ = (I + ΔtQ)k(u0 − u∗) =
∑
j=2

cjλ
k
juj , (3.115)

which concludes ∥∥∥∥ρkiπi
− 1

∥∥∥∥
�∞

≤ c|λ2|k with |λ2| < 1. (3.116)

Here λ2 is the second eigenvalue (in terms of the magnitude) of I + ΔtQ sitting in the ball with radius 
λ1 = 1 and thus |λ2| < 1.

Finally, taking summation with respect to i in (3.101) shows

∑
i

(
ρk+1
i |C̃i| − ρki |C̃i|

)
=Δt

⎛
⎝∑

i,j

η̃jP̃jiρ
k
j |C̃j | −

∑
i

η̃iρ
k+1
i |C̃i|

⎞
⎠

=Δt

⎛
⎝∑

η̃jρ
k
j |C̃j | −

∑
η̃iρ

k+1
i |C̃i|

⎞
⎠ ,

(3.117)
j i
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which gives (3.106). �
As a comparison, we also give some other standard stability estimates for both explicit and implicit 

schemes in Appendix D and show that only the unconditional stable explicit scheme (3.97) achieves both 
the efficiency and the stability. We refer to [27] for successful applications of Algorithm 2 to image morphing 
problems with 2D structured spacial grids. With structured grids, instead of Voronoi cell approximations ob-
tained from sample points, the computations of explicit time stepping for Markov process using Algorithm 2
are more accurate. [27] also combines Algorithm 2 with a thresholding dynamics to simulate mass-conserved 
shape dynamics for distribution with binary values 1, 2.

4. Simulations for Fokker-Planck solver

In this section, we conduct some challenging numerical simulations with reaction coordinates for the 
dumbbell, the Klein bottle and sphere. We use the dataset {yi}2000

i=1 with the reaction coordinates on the 
underlying manifolds including dumbbell, Klein bottle and sphere to solve the Fokker-Planck equation (3.1)
following the unconditionally stable explicit scheme (3.97).

4.1. Comparison with a ground-truth dynamics on sphere

In this section, we construct a ground-truth exact solution given by an oscillated von Mises-Fisher distri-
bution on the 2-sphere in R3. This distribution is a commonly used distribution in physics and bioinformatics, 
for instance, to model the electric field-induced dipole interaction. For other complicated applications, it is 
hard to construct a ground-truth exact solution with an exact source term. So we refer to [8,9] for other 
comparison methods without knowing an exact solution.

We choose the spherical coordinates as

θ ∈ [0, π], ϕ ∈ [0, 2π], with x = cosϕ sin θ, y = sinϕ sin θ, z = cos θ. (4.1)

For t ∈ [0, 2], define three parameters

κ(t) = 1 + 0.2 sin(t), a(t) = π/2 + 0.2 sin(3t), b(t) = 5t. (4.2)

Define the polar angle

η(θ, ϕ, t) = cos a(t) cos θ + sin a(t) sin θ cos(ϕ− b(t)). (4.3)

Then we choose the exact solution as the von Mises–Fisher distribution

ρv(θ, ϕ, t) = C(κ(t))eκ(t)η(θ,ϕ,t), (4.4)

where C(κ) = κ
4π sinhκ .

Based on the surface gradient and surface divergence on sphere

∇N f = ∂f

∂θ
θ̂ + 1

sin θ

∂f

∂ϕ
ϕ̂, ∇N · F = 1

sin θ

∂

∂θ
[sin θFθ] + 1

sin θ

∂Fϕ

∂ϕ
, (4.5)

then it satisfies Fokker-Planck equation (3.1) with source term
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Table 2
The root mean square error e.

Time 0 0.4 0.8 1.2 1.6 2
RMSE 0 0.0151 0.0138 0.0126 0.0149 0.0140

g(θ, ϕ, t) = divN (∇NρN + ρNt ∇NUN ) − ∂tρ
N

= ∂2ρN

∂θ2 + ∂ρN

∂θ

∂UN
∂θ

+ ρN
∂2UN
∂θ2 + cot θ[∂ρ

N

∂θ
+ ρN

∂UN
∂θ

]

+ 1
sin2 θ

[∂
2ρN

∂ϕ2 + ∂ρN

∂ϕ

∂UN
∂ϕ

+ ρN
∂2UN
∂ϕ2 ] − ∂tρ

N .

(4.6)

Take U = 1, plugging (4.4) into the RHS of (4.6), we obtain

g(θ, ϕ, t) = ρ

[
κ2[η2

θ + sin2 a sin2(ϕ− b)
]
− 2κη − C ′

C
κ′ − (κ′η + κηt)

]
; (4.7)

see details in Appendix E.
With π = e−U , and the source term g computed from the exact solution (4.7). Then Algorithm 2, i.e., 

the explicit scheme (3.98), becomes

ρk+1
i

πi
= ρki

πi
+ η̃iΔt

1 + η̃iΔt

⎛
⎝ ∑

j∈VF(i)

P̃ij

ρkj
πj

− ρki
πi

⎞
⎠− Δt

gki
πi

. (4.8)

Here for the discrete source term gki , we use continuous time derivatives at time step k and discrete spacial 
derivative on grid i. For uk+1

i := ρk+1
i

πi
, with the additional source term g(θ, ϕ, t), the matrix formulation 

with Q defined in (3.100) is uk+1 = (I + ΔtQ)uk − Δt g
k

π .
To compare the numerical solution and the exact solution with a long time validation. We take Δt = 0.001

and final time as T = 2000 ∗ Δt with iteration number 2000. We first sample 2000 data points on a 
unit sphere N = S2 ⊂ R3, then we compute the approximated Voronoi cell volumes |C̃i|ni=1 and areas 
Γ̃ij from Algorithm 1 by taking the bandwidth r = 0.3. The equilibrium {πi} is taking to be constant, 
which is normalized so that the total mass condition (3.105) is satisfied. In Fig. 2. We plot 6 snapshots at 
t = 0, 0.4, 0.8, 1.2, 1.6, 2.0 for both numerical solution ρi and exact solution ρv(θ, ϕ, t) in (4.4) starting from 
the same initial data given by ρv(θ, ϕ, 0). We also list Table 2 to show the root mean square error (RMSE) 
e :=

√
1

2000
∑2000

i=1 |ρi − ρv(i)|2 at these 6 times. A video showing the dynamics of both numerical solution 
ρi and exact solution ρv is provided in https://youtu .be /x98J8CSYBq8.

4.2. Example I: Fokker-Planck evolution on dumbbell

Suppose (θ, φ) ∈ [0, 2π) × [0, π), then we have the following dumbbell in R200 parametrized as 
(x, y, z, 0, · · · , 0) = f1(θ, φ) ∈ R200, where

r =
√√

1 + 0.954(cos(2φ)2 − 1) + 0.952 cos(2φ) (4.9)

x = r sin(φ) cos(θ), y = r sin(φ) sin(θ), z = r cos(φ).

After composition with a dilation and rotation map f2 of R200, we have an embedded dumbbell M ⊂ R200. 
Suppose f2 ◦ f1(θ, φ) is the parametrization of M. We sample 4000 points (θ1, φ1), · · · , (θ4000, φ4000) on 
[0, 2π) × [0, π). Let xi = f2 ◦ f1(θi, φi), then we have a non uniform sample {xi}4000

i=1 on M. We apply the 

https://youtu.be/x98J8CSYBq8
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Fig. 2. Left: The numerical solution ρk
i in terms of θ, ϕ over 2000 points {yi}2000

i=1 ⊂ S2 ⊂ R3. Right: The exact solution given by 
the oscillated von Mises–Fisher distribution ρv(θ, ϕ, t) in (4.4). We plot 6 snapshots at t = 0, 0.4, 0.8, 1.2, 1.6, 2.0.

diffusion map to find the reaction coordinates {yi}4000
i=1 of {xi}4000

i=1 in R3, i.e. {yi}4000
i=1 can be regarded as a 

non uniform sample on a dumbbell N ⊂ R3.
Suppose ψi is the i th eigenfunction of the Laplace-Beltrami operator on N . Assume the initial density 

ρ0 is ψ2 plus some constant (so that ρ0 is positive) as shown in Fig. 3. Assume the equilibrium density π is 
ψ8 plus some constant as shown in Fig. 3. We first obtain the approximated Voronoi cell volumes |C̃i|4000i=1
and the areas Γ̃ij from Algorithm 1 by taking the bandwidth r = 0.16 and threshold s = 0. Then we adjust 
the initial data, i.e., we replace ρ0 by cρ0 such that (3.105) holds. We set the time step Δt = 0.05. Let 
T = kΔt for the integer k and 1 ≤ k ≤ 20000, i.e., we iterate the scheme for 20000 times and set the final 
time to be T = 20000 ∗ Δt = 1000. We use the unconditional stable explicit scheme (3.97) to solve ρk. We 
compare the numerical relative error in maximum norm with the theoretic relative error, |λ2|k = 0.9997k in 
(3.109), in the semilog-plot in Fig. 4. The exponential convergence rate is exactly same. To clearly see the 
dynamics of the change of the density over the 4000 points, we plot ρk for k = 20, 60, 100, 160, 220, 4000, 
correspondingly T = 1, 3, 5, 8, 11, 200 in Fig. 5.

4.3. Example II: Fokker-Planck evolution on Klein bottle

Suppose (θ, φ) ∈ [0, 2π) × [0, 2π), then we have the following Klein bottle in N ⊂ R4 parametrized as 
(x, y, z, w) = f(θ, φ) ∈ R4, where

x = (1 + 0.3 cos(θ)) cos(φ) (4.10)

y = (1 + 0.3 cos(θ)) sin(φ)

z = 0.3 sin(θ) cos(φ2 )

w = 0.3 sin(θ) sin(φ )
2
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Fig. 3. Left: The initial density is the second eigenfunction of the Laplace Beltrami operator on a dumbbell N ⊂ R3 plus a constant. 
We plot it over 4000 points {yi}4000

i=1 ⊂ N ⊂ R3. Right: The equilibrium density is the eighth eigenfunction of the Laplace Beltrami 
operator on a dumbbell N ⊂ R3 plus a constant. We plot it over 4000 points {yi}4000

i=1 ⊂ N ⊂ R3.

Fig. 4. The semilog-plot comparison between the numerical relative error with theoretic relative error. The numerical relative error 
is the error from the unconditional stable explicit scheme (3.97) with Δt = 0.05 and 1 ≤ k ≤ 20000. The theoretic relative error is 
based on (3.109) with |λ2|k = 0.9997k.

We sample 2000 points (θ1, φ1), · · · , (θ2000, φ2000) on [0, 2π) × [0, 2π). Let yi = f(θi, φi), then we have non 
uniform samples {yi}2000

i=1 on N . We can regard them as the reaction coordinates of 2000 points sampled 
on M (a manifold diffeomorphic to a Klein bottle) in some high dimensional space. In this example, we 
will visualize the functions on the Klein bottle by two methods. First, consider the projection from R4 to 
R3 by (x, y, z, w) → (x, y, z). The restriction of the projection on N maps the Klein bottle to a pinched 
torus in R3. Second, consider the projection from R4 to R3 by (x, y, z, w) → (y, z, w). The restriction of the 
projection on N maps the Klein bottle to a Roman surface in R3. For any function on the Klein bottle, we 
will visualize it by plotting it on both the pinched torus and the Roman surface.
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Fig. 5. The density dynamics ρk from the unconditional stable explicit scheme (3.97) with Δt = 0.05. We plot ρk for 
k = 20, 60, 100, 160, 220, 4000, correspondingly on time T = 1, 3, 5, 8, 11, 200.

Suppose ψi is the i th eigenfunction of the Laplace-Beltrami operator on N . Assume the initial density 
ρ0 is ψ2 plus some constant (so that ρ0 is positive) as shown in Fig. 6. Assume the equilibrium density π is 
ψ7 plus some constant as shown in Fig. 6. We first obtain the approximated Voronoi cell volumes |C̃i|2000i=1
and the areas Γ̃ij from Algorithm 1 by taking the bandwidth r = 0.23 and threshold s = 0. Then we adjust 
the initial data, i.e., we replace ρ0 by cρ0 such that (3.105) holds. We set the time step Δt = 0.05. Let 
T = kΔt for the integer k and 1 ≤ k ≤ 10000, i.e., we iterate the scheme for 10000 times and set the final 
time to be T = 10000 ∗ Δt = 500. We use the unconditional stable explicit scheme (3.97) to solve ρk. We 
compare the numerical relative error in maximum norm with the theoretic relative error, |λ2|k = 0.9993k
in (3.109), in the semilog-plot in Fig. 7. The exponential convergence rate is exactly the same. To clearly 
see the dynamics of the change of the density over the 2000 points, we plot ρk for k = 50, 1000, 2000, 10000, 
correspondingly T = 2.5, 50, 100, 500 in Fig. 8.

4.4. Example III: the “breakup” of Pangaea via Fokker-Planck evolution on sphere

In this example, we use the Fokker-Planck evolution on sphere to simulate the dynamics of the altitude 
of continents and the depth of oceans for earth based on the dataset for initial distribution of Pangaea 
supercontinent (250 million years ago) and the equilibrium distribution of the current earth.
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Fig. 6. Top two panels: The initial density is the second eigenfunction of the Laplace Beltrami operator on a Klein bottle N ⊂ R4

plus a constant. We plot it over the pinched torus and the roman surface in R3 respectively. Bottom two panels: The equilibrium 
density is the seventh eigenfunction of the Laplace Beltrami operator on a Klein bottle N ⊂ R4 plus a constant. We plot it over 
the pinched torus and the roman surface in R3 respectively.

Fig. 7. The semilog-plot comparison between the numerical relative error with theoretic relative error in the Klein bottle example. 
The numerical relative error is the error from the unconditional stable explicit scheme (3.97) with Δt = 0.05 and 1 ≤ k ≤ 10000. 
The theoretic relative error is base on (3.109) with |λ2|k = 0.9993k.

Suppose {yi}2000
i=1 are the points on the unit sphere N = S2 ⊂ R3, i.e., {yi}2000

i=1 are the reaction co-
ordinates of 2000 points on M (a manifold diffeomorphic to a sphere) in some high dimensional space. 
Assume the initial density ρ0

i at {yi}, i = 1, · · · , 2000 are extracted from the Pangaea continents map 
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Fig. 8. The density dynamics ρk from the unconditional stable explicit scheme (3.97) with Δt = 0.05. On the left four panels, we 
plot ρk for k = 50, 1000, 2000, 10000 corresponding to time T = 2.5, 50, 100, 500 on the pinched torus. On the right four panels, we 
plot ρk for k = 50, 1000, 2000, 10000 corresponding to time T = 2.5, 50, 100, 500 on the Roman surface.

file [1] as shown in Fig. 9 (down left). The value of the initial density ρ0
i ∈ {1, 2} where 1 represents 

oceans and 2 represents continents. Assume the equilibrium {πi} at {yi} are collected from the ETOPO5 
topography data [2] expressing the altitude of continents and the depth of oceans for earth. The value of 
the equilibrium {πi} ranges from −7000 to 7000 where the positive values represent the altitude of con-
tinents, negative values represent the depth of oceans and 0 represents sea level. Before plugging into 
the Fokker-Planck equation, we add a constant cp to πi such that πi > 0 for all i. However, when 
showing the evolution of continents in figures, we subtract this constant and present the true physical 
altitudes.
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Fig. 9. Simulations for the density dynamics of altitude and depth of continents and oceans starting from Pangaea (down left) to 
the final altitude of land-ocean (down right) with parameters dt = 0.05, T = 500. (up) The semilog-plot comparison between the 
numerical relative error in maximum norm (blue circle) with theoretic relative error |λ2|k = 0.9985k (blue line) in (3.109). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We first obtain the approximated Voronoi cell volumes |C̃i|ni=1 and areas Γ̃ij from Algorithm 1 by taking 
the bandwidth r = 0.3 and threshold s = 0. Then we adjust the initial data, i.e., we replace ρ0 by cρ0

such that the total mass condition (3.105) holds. We set the time step Δt = 0.05. Let T = kΔt for the 
integer k and 1 ≤ k ≤ 10000, i.e., we iterate the scheme for 10000 times and set the final time to be 
T = 10000 ∗ Δt = 500. We use the unconditionally stable explicit scheme (3.97) to solve ρk. In Fig. 9
(up), the numerical relative error in maximum norm is semilog-plotted using circles. Compared with decay 
of the theoretic relative error |λ2|k in (3.109), blue line in the semilog-plot, the exponential convergence 
rate is exactly same. The initial 3D plot of Pangaea continents is shown in Fig. 9 (down left) while the 
final 3D plot at T = 500 of the simulated altitude and depth of continents and oceans are shown in Fig. 9
(down right).1 To clearly see the dynamics of altitude and depth of continents and oceans at n points with 
longitude and latitude, starting from the same Pangaea continents with time step Δt = 0.05, four snapshots 
at T = 0, 1, 10, 75 of the dynamics are shown in Fig. 10. A video is also provided to show the dynamics 
of the density https://youtu .be /j5XBPdQhEEs. Here we used nonuniform time intervals since the shapes 
of continentals (the region with positive altitudes) quickly move from the initial Pangaea supercontinents 
towards the equilibrium shape of current continents. If we only care about the shape of the continents and 
keep the binary-valued density during the shape evolution, we refer to [27] for the thresholding adjustment 
method.

1 The altitude and depth exceed the range [−3800 m, 3800 m] is cut off for clarity.

https://youtu.be/j5XBPdQhEEs
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Fig. 10. 2D Snapshots for the density dynamics of altitude and depth of continents and oceans at 2000 points with longitude and 
latitude starting from Pangaea with parameters dt = 0.05, T = 0, 1, 10, 75.

5. Discussion

We focus on the analysis of the dynamics of a physical system with a manifold structure. The underlying 
manifold structure of the system is reflected through a point cloud in a high dimensional space. By applying 
the diffusion map, we find the reaction coordinates so that those data points are reduced onto a manifold in 
a low dimensional space. Based on the reaction coordinates, we propose an implementable, unconditionally 
stable, finite volume scheme for a Fokker-Planck equation which incorporates both the structure of the 
manifold in the low dimensional space and the equilibrium information. The finite volume scheme defines an 
approximated Markov process (random walk) on the point cloud with an approximated transition probability 
and jump rate. We also provide the weighted L2 convergence analysis of the finite volume scheme to 
the Fokker-Planck equation on the manifold in the low dimensional space. The efficiency, unconditional 
stability, and accuracy of the data-driven solver proposed in this paper are justified theoretically. Although 
we construct several numerical examples to illustrate our data-driven solver, there are still many interesting 
directions issued from practical problems for future works. An important direction is the manifold-related 
applications such as the optimal network partitions and the transition path in chemical reactions, especially 
on the high dimensional practical datasets.
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Appendix A. Theorems about embedding by eigenfunctions of Laplacian

Let Δ be the Laplace-Beltrami operator of a closed smooth Riemannian manifold M. Let {λi}∞i=0 be the 
eigenvalues of −Δ, and

Δψi = −λiψi, (A.1)

where ψi is the corresponding eigenfunction normalized in L2(M). We have 0 = λ0 < λ1 ≤ λ2 ≤ · · · .
In this section, we review the theorems about embedding the manifold M by using the eigenfunctions 

of Δ. In [7], the authors provide a theorem about spectral embedding by using all the eigenvalues and 
eigenfunctions of Δ into the Hilbert space �2.

Theorem A.1. (Bérard-Besson-Gallot, [7]) Let M be a d dimensional smooth closed Riemannian manifold. 
Then, for x ∈ M

Ψ(x) = (2t)
d+2
4
√

2(4π) d
4 (e−λ1tψ1(x), · · · , e−λqtψq(x), · · · ), (A.2)

is an embedding of M into �2 for all t > 0.

[36] improves the above result locally. They show that one can use finite eigenfunctions of Laplace-
Beltrami operator to embed the manifold locally. The result can be briefly summarized as follows.

Theorem A.2. (Jones-Maggioni-Schul, [36]) Let M be a d dimensional smooth closed Riemannian manifold, 
for each x ∈ M , there are j1 ≤ · · · ≤ jd and the constants C1, · · · , Cd such that

Ψ(x) = (C1ψj1(x), · · · , Cdψjd(x)), (A.3)

is locally a bi-Lipschitz chart.

Moreover, the next theorem [46] says that we can use the eigenvalues and eigenfunctions of the Laplace-
Beltrami operator to construct an almost isometric embedding of the manifold into some Euclidean space.

Theorem A.3. (Portegies, [46]) Let M be a d dimensional smooth closed Riemannian manifold. Suppose 
RicM ≥ (d − 1)k, the injectivity radius of M, i(M) ≥ i0 and the volume of M, Vol(M) ≤ V . For any 
ε > 0, there is a t0(ε, d, k, i0) such that for t < t0, there is C(ε, d, k, i0, V, t), if q > C, then for x ∈ M

Ψ(x) = (2t)
d+2
4
√

2(4π) d
4 (e−λ1tψ1(x), · · · , e−λqtψq(x)), (A.4)

is an embedding of M into Rq such that 1 − ε < ‖∇Ψ‖op < 1 + ε. Here ‖ · ‖op is the operator norm.

Based on Theorem 2.7, the smallest q that

Ψ1(x) = (ψ1(x), · · · , ψq(x)), (A.5)

is a smooth embedding of M is called the embedding dimension of M. Based on Theorem A.3, the smallest 
q that

Ψ2(x) = (2t)
d+2
4
√

2(4π) d
4 (e−λ1tψ1(x), · · · , e−λqtψq(x)), (A.6)



298 Y. Gao et al. / Appl. Comput. Harmon. Anal. 62 (2023) 261–309
Fig. 11. An illustration to the proof of Proposition 3.2.

is an almost isometric embedding of M is called the almost isometric embedding dimension of M. We 
expect the embedding dimension is much smalled than the almost isometric embedding dimension. Hence, 
for the dimension reduction purpose, we are looking for an embedding of the manifold rather than an almost 
isometric embedding.

Appendix B. Proof of Proposition 3.2

Since δ is less than the injectivity radius, there is a Euclidean ball BTyi
N

δ (0) of radius δ in the tangent 
space Tyi

N of N at yi such that the exponential map expyi
: BTyi

N
δ (0) → Bδ(yi) is a diffeomorphism. 

Suppose yj = expyi
(w). We illustrate this setup in Fig. 11. It is sufficient to prove that exp−1

yi
(Bδ(yi) ∩Gij)

is a d − 1 dimensional submanifold of Tyi
N . For any v ∈ exp−1

yi
(Bδ(yi) ∩ Gij), by the definition of the 

bisector, we have

d2
N (expyi

(v), expyi
(w)) = d2

N (expyi
(v), yj) = d2

N (expyi
(v), yi) = |v|2. (B.1)

Note that

d2
N (expyi

(v), expyi
(w)) = |v − w|2 + f(v, w). (B.2)

f(v, w) is a smooth function on B
Tyi

N
δ (0) ×B

Tyi
N

δ (0). In particular,

f(v, w) = −1
3Ryi

(v, w, v, w) + O((|v|2 + |w|2) 5
2 ) (B.3)

for |v| and |w| small, where Ryi
is the curvature tensor at yi. Combine (B.1) and (B.2), we have that

|w|2 − 2v · w + f(v, w) = 0. (B.4)

As yj is a fixed point, we treat w as a fixed vector. Therefore, we use the notation fw(x) = f(x, w) to 

indicate fw is a function of x ∈ B
Tyi

N
δ (0). Then, we can define a smooth function F (t, x) on R ×B

Tyi
N

δ (0)
as

F (t, x) = |w|2 − 2(1 + t)x · w + fw((1 + t)x). (B.5)

Let H be the d − 1 dimensional hyperplane that perpendicularly bisects w in Tyi
N . Let v0 be the vector on 

H so that v = (1 + t0)v0. By (B.4), F (t0, v0) = 0. If we can show that ∂F (t0,v0)
∂t �= 0, then by the Implicit 

Function Theorem, there is a ball B centered at v0 so that t = g(x) for x ∈ B and g is differentiable. Hence, 
(1 + g(x))x for x ∈ B ∩H is a chart for exp−1

y (Bδ(yi) ∩Gij) around v. We calculate ∂F (t0,v0) :

i ∂t
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∂F (t0, v0)
∂t

= −2v0 · w + ∇fw(v) · v0. (B.6)

By (B.3), |∇fw(v)| = O(|v||w|2) where the constant depends on the sectional curvatures at yi. Since the 
manifold is compact, the sectional curvatures have upper and lower bounds. Hence,

∂F (t0, v0)
∂t

= −2v0 · w + ∇fw(v) · v0 < −2|v0||w| cos(θ) + |v0|O(|v||w|2), (B.7)

where θ is the angle between v0 and w. Since v0 ∈ B
Tyi

N
δ (0) ∩H, cos(θ) > |w|

2δ . v ∈ B
Tyi

N
δ (0), so |v| < δ. 

Therefore, when δ is small enough,

∂F (t0, v0)
∂t

< |v0||w|2(−
1
δ

+ O(δ)) < 0. (B.8)

Next, we prove the second part of the proposition. y∗ ∈ Mij follows from the construction. Note that by 
the triangle inequality and the definition of the bisector, the geodesic sphere centered at yi through y∗ is 
tangent to Mij at y∗. Hence, by Gauss’s Lemma, the minimizing geodesic between yi and yj is perpendicular 
to Mij at y∗.

Appendix C. Proof of Proposition 3.12 and Proposition 3.13

We start from a study of the matrix Cn,r(yk) in Definition 3.8 and relate it to its continuous form. 
Consider the local covariance matrix Cyk,BR�√

r
(yk)∩N defined as follows.

Cyk,BR�√
r
(yk)∩N =

∫
BR�√

r
(yk)∩N

(y − yk)(y − yk)�ρ∗∗(y)dVN (y) ∈ R�×�. (C.1)

Suppose Cyk,BR�√
r
(yk)∩N has the following eigendecomposition:

Cyk,BR�√
r
(yk)∩N = U(yk)Λ(yk)U(yk)� ∈ O(�), (C.2)

where Λ(yk) is a diagonal matrix with the diagonal entries to be eigenvalues of Cyk,BR�√
r
(yk)∩N . Moreover, 

we have Λ11(yk) ≥ Λ22(yk) ≥ · · · ≥ Λ��(yk). U(yk) ∈ O(�) consists of the corresponding orthonormal 
eigenvectors of Cyk,BR�√

r
(yk)∩N . Intuitively, Cyk,BR�√

r
(yk)∩N is the continuous form of the matrix Cn,r(yk).

By setting ε =
√
r in Proposition 3.2 in [56], we have the following lemma.

Lemma C.1. Assume that Tyk
N is generated by the first d standard basis of R�.

Λ(yk) = |Sd−1|P (yk)r
d+2
2

d(d + 2)

([
Id×d 0

0 0

]
+ O(r)

)
, (C.3)

U(yk) =
[
X1 0
0 X2

]
+ O(r), (C.4)

where X1 ∈ O(d) and X2 ∈ O(� − d).

Above lemma says that the first d eigenvectors of Cyk,BR�√
r
(yk)∩N form an orthonormal basis of Tyk

N up 

to an error of order O(r). Note that, for simplicity, we assume Tyk
N is generated by the first d standard 
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basis of R� so that U(yk) can be expressed in the above block form. Suppose Cn,r(yk) has the following 
eigendecomposition:

Cn,r(yk) = Un(yk)Λn(yk)Un(yk)�. (C.5)

Λn(yk) is a diagonal matrix with the diagonal entries to be eigenvalues of Cn,r(yk). Moreover, we have 
Λn,11(yk) ≥ Λn,22(yk) ≥ · · · ≥ Λn,��(yk). Un(yk) ∈ O(�) consists of the corresponding orthonormal eigen-
vectors of Cn,r(yk).

The relation between the eigenstructure of Cyk,BR�√
r
(yk)∩N and Cn,r(yk) is discussed in Lemma E.4 in 

[56].

Lemma C.2. Assume that Tyk
N is generated by the first d standard basis of R�. When n is large enough, 

with probability greater than 1 − 1
n2 , for all yk,

Λn(yk) = Λ(yk) + O(

√
log n

nr−
d
2−2

), (C.6)

Un(yk) =
[
X ′

1 0
0 X ′

2

]
U(yk) + O(

√
log n
nr

d
2−2

), (C.7)

where X ′
1 ∈ O(d) and X ′

2 ∈ O(� − d).

Remark C.3. Above lemma follows from Lemma E.4 in [56] if we choose ε =
√
r and ρ → ∞ in Case 0 

of Lemma E.4 in [56]. In fact, Case 0 of Lemma E.4 in [56] focuses on the first d eigenpairs of the matrix 
Cyk,BR�√

r
(yk)∩N of which we need to recover.

If we combine Lemma C.1 and Lemma C.2, we have

Λn(yk) = |Sd−1|P (yk)r
d+2
2

d(d + 2)

[
Id×d 0

0 0

]
+ O(r d

2 +2) + O(

√
log n

nr−
d
2−2

), (C.8)

Un(yk) =
[
U1 0
0 U2

]
+ O(r) + O(

√
log n
nr

d
2−2

), (C.9)

where U1 ∈ O(d) and U2 ∈ O(� − d). If nr
d
2

logn → ∞ as n → ∞, then 
√

logn

nr
d
2 −2

≤ r. If nr
d
2 +2

logn → ∞ as n → ∞, 

then 
√

logn

nr
d
2 −2

≤ r and 
√

logn

nr−
d
2 −2

≤ r
d
2 +2. Hence, we have the following proposition.

Proposition C.4. Assume that Tyk
N is generated by the first d standard basis of R�. If nr

d
2

logn → ∞ as n → ∞, 
then with probability greater than 1 − 1

n2 , for all yk,

Un(yk) =
[
U1 0
0 U2

]
+ O(r), (C.10)

where U1 ∈ O(d) and U2 ∈ O(� − d).
If nr

d
2 +2

logn → ∞ as n → ∞, then with probability greater than 1 − 1
n2 , for all yk,

Λn(yk) = |Sd−1|P (yk)r
d+2
2

[
Id×d 0

0 0

]
+ O(r d

2 +2), (C.11)

d(d + 2)
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Un(yk) =
[
U1 0
0 U2

]
+ O(r), (C.12)

where U1 ∈ O(d) and U2 ∈ O(� − d).

Above proposition should be understood in the following way. If n and r satisfy nr
d
2

logn → ∞ as n → ∞, then 
we have an approximation of the tangent space of N at yk, i.e. the first d eigenvectors of Cn,r(yk) are the 

basis of Tyk
N up to an error of order O(r). If n and r satisfy nr

d
2 +2

logn → ∞ as n → ∞, the first d eigenvectors 
of Cn,r(yk) are the basis of Tyk

N up to an error of order O(r). Moreover, there are d significantly large 
eigenvalues of Cn,r(yk) which are close to the first d eigenvalues of Cyk,BR�√

r
(yk)∩N .

Next, we show that the map ι̃k in the Definition 3.8 restricted on BR�

r (yk) ∩N is a 1 +O(r) bi-Lipschitz 
homeomorphism.

Lemma C.5. Suppose r → 0 and nr
d
2

logn → ∞ as n → ∞. Suppose r is small enough, then with probability 

greater than 1 − 1
n2 , for all yk and any y, y′ ∈ BR�

r (yk) ∩N , we have

‖ι̃k(y′) − ι̃k(y)‖Rd = ‖ιk(y′ − y)‖Rd = dN (y,y′)(1 + O(r)). (C.13)

Proof. ‖ι̃k(y′) − ι̃k(y)‖Rd = ‖ιk(y′ − y)‖Rd follows from the definition. Next, we prove ‖ιk(y′ − y)‖Rd =
dN (y, y′)(1 + O(r)). For simplicity, we assume yk = 0 and Tyk

N is generated by the first d standard basis 
of R�. For any y ∈ R�, we use the following notation to simplify the proof:

y = �v, v⊥� ∈ R� , (C.14)

where v ∈ Tyk
N forms the first d coordinates of y and v⊥ ∈ T⊥

yk
N forms the last � − d coordinates of y. 

For any y, y′ ∈ BR�

r (yk) ∩N , suppose y = �v1, v⊥1 � and y′ = �v2, v⊥2 �. Due to the manifold structure of N , 
we have

‖v⊥1 − v⊥2 ‖R�−d ≤ C1r‖v1 − v2‖Rd , (C.15)

for some constant C1 depending on the curvature of N . Hence,

‖v1 − v2‖Rd ≤ ‖y′ − y‖R� ≤ ‖v1 − v2‖Rd

√
1 + C2

1r
2, (C.16)

which is equivalent to

‖v1 − v2‖Rd = ‖y′ − y‖R�(1 + O(r2)). (C.17)

Moreover, suppose {βn,r,1, · · · , βn,r,d} are orthonormal eigenvectors corresponding to Cn,r(yk)’s largest d
eigenvalues. Then, by Proposition C.4

βn,r,1 = �βi, 0� + O(r), (C.18)

where {βi}di=1 form an orthonormal basis of Tyk
N ≈ Rd.

‖ιk(y′ − y)‖Rd =‖v1 − v2‖Rd + ‖y′ − y‖R�O(r) (C.19)

=‖y′ − y‖R�(1 + O(r2)) + ‖y′ − y‖R�O(r) = ‖y′ − y‖R�(1 + O(r)),

where we apply (C.17) in the second last step.
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By equation (3.74), we know that dN (y, y′) ≤ 2D1r. Hence, by Lemma 3.9,

‖ιk(y′ − y)‖Rd =‖y′ − y‖R�(1 + O(r)) = dN (y,y′)(1 + O(d2
N (y,y′)))(1 + O(r)) (C.20)

=dN (y,y′)(1 + O(r2))(1 + O(r)) = dN (y,y′)(1 + O(r)). �
We introduce the following notations to prove the following lemma and proposition. Denote the boundary 

of Ck by ∂Ck. Denote the boundary of ι̃k(Ck) by ∂ι̃k(Ck) = ι̃k(∂Ck). Let C̃k,0 be the Voronoi cell in Rd

containing 0 constructed in the Step 4 in Algorithm 1. Denote the boundary of C̃k,0 by ∂C̃k. Denote 
dR

d

H (S1, S2) be the Hausdorff distance between two sets S1 and S2 in Rd with respect to the Euclidean 
metric.

Lemma C.6. If n is large enough, for r satisfying Assumption 3.10, with probability greater than 1 − 1
n2 , for 

all yk, dR
d

H (∂ι̃k(Ck), ∂C̃k) = O(r2).

Proof. For simplicity, in this proof, we use | · | to denote ‖ · ‖Rd . Based on Assumption 3.10, the requirement 
of Lemma C.5 holds. Recall that in Assumption 3.10, we assume BR�

r (yk) ∩ {yi}ni=1 = {yk,1, · · · , yk,Nk
}. 

We have Ck ⊂ BR�

r (yk). Moreover, if Γkj is a Voronoi surface of Ck between yk and yj , then yj ∈ BR�

r (yk). 
We denote Γk,i to be the Voronoi face between yk and yk,i.

The proof has two steps, first we show that for any v ∈ ∂ι̃k(Ck), dRd(v, ∂C̃k) = O(r2). We need to 
consider two cases in this step.

Case 1: v ∈ C̃k,0
Suppose v = ι̃k(y) for some y ∈ ∂Ck. Moreover y ∈ Γk,i. In other word, y is on the Voronoi face between 

yk and yk,i ∈ BR�

r (yk). As shown in Fig. 12(a), let O be the origin in Rd. Let A = v and B = ι̃k(yk,i). Let 
H be the hyperplane in Rd which perpendicularly bisects OB. M is the intersection of H and OB. Let C
be the point on OB so that AC is perpendicular to OB. Since we assume A ∈ C̃k,0, C ∈ OM . We have

dRd(A,H) =|CM | = |CB| − |CO|
2 = |CB|2 − |CO|2

2(|CB| + |CO|) (C.21)

= |AB|2 − |AC|2 − (|AO|2 − |AC|2)
2|BO| = (|AB| + |AO|)(|AB| − |AO|)

2|BO| (C.22)

Since y ∈ Γk,i, by equation (3.74), dN (y, yk,i) = dN (y, yk) = a ≤ D1r. By Lemma C.5, |AB| = a(1 +O(r))
and |AO| = a(1 + O(r)), hence (|AB| + |AO|)(|AB| − |AO|) = 2a2O(r) ≤ 2D2

1O(r3). By Lemma C.5, 
|BO| = dN (yk, yk,i)(1 + O(r)). By (2) in Assumption 3.10, dN (yk, yk,i) ≥ D2r. Hence,

dRd(A,H) = (|AB| + |AO|)(|AB| − |AO|)
2|BO| ≤ D2

1
D2

O(r2) = O(r2). (C.23)

Since C̃k,0 is convex, dRd(A, ∂C̃k) ≤ dRd(A, H). The conclusion follows. Note that if A /∈ C̃k,0, we still have 
dRd(A, H) = O(r2). However, it is not true that dRd(A, ∂C̃) ≤ dRd(A, H).

Case 2: v /∈ C̃k,0
Suppose v = ι̃k(y) for some y ∈ ∂Ck. As shown in Fig. 12(b), let O be the origin in Rd. Let A = v. Suppose 

OA intersects with ∂C̃k at D. D ∈ F̃k,j , where F̃k,j is Voronoi face in Rd between O and B = ι̃k(yk,j). H
is the hyperplane that perpendicularly bisects OB. M is the intersection between H and OB. Note that 
F̃k,j ⊂ H. Let C be the point on OB so that AC is perpendicular to OB. Since we assume A /∈ C̃k,0, 
C ∈ BM . We have

|CM | = |CO| − |CB| = |CO|2 − |CB|2 (C.24)
2 2(|CB| + |CO|)
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Fig. 12. Illustrations of Case 1 and Case 2 in the proof of Lemma C.6.

= |AO|2 − |AC|2 − (|AB|2 − |AC|2)
2|BO| = (|AB| + |AO|)(|AO| − |AB|)

2|BO| . (C.25)

y ∈ ∂Ck but we may not have y ∈ Γk,j , therefore, a = dN (y, yk,j) ≥ dN (y, yk) = b. dN (y, yk,j) ≤
dN (y, yk) + dN (yk,j , yk), hence by equation (3.74), b ≤ D1r and a ≤ 2D1r. By Lemma C.5, |AB| =
a(1 + O(r)) and |AO| = b(1 + O(r)). Since a ≥ b and |AB| ≤ |AO|, we have 0 ≤ a − b = D1O(r2). Hence, 
|AO| − |AB| = D1O(r2). By Lemma C.5 and Assumption 3.10,

|BO| = dN (yk,yk,j)(1 + O(r)) ≥ D2r(1 + O(r)), (C.26)

|AO| = dN (y,yk)(1 + O(r)) ≤ D1r(1 + O(r)). (C.27)

Hence, (|AB| + |AO|)(|AB| − |AO|) ≤ 2|AO|(|AB| − |AO|) ≤ 2D2
1O(r3). Moreover,

|CM | = (|AB| + |AO|)(|AB| − |AO|)
2|BO| ≤ D2

1
D2

O(r2) = O(r2). (C.28)

At last,

|AD| = |CM ||AO|
|OC| ≤ |CM ||AO|

|OM | = 2|CM ||AO|
|OB| ≤ 2|CM |D1r(1 + O(r))

D2r(1 + O(r)) = O(r2). (C.29)

Since dRd(A, ∂C̃) ≤ |AD|, the conclusion follows.
In the second step, we show that for any v ∈ C̃k, dRd(v, ∂ι̃k(Ck)) = O(r2). The proof follows the similar 

argument as the first step, so we omit it. �
Now we prove the first main proposition.

Proof of Proposition 3.12. By Assumption 3.10, for any y ∈ ∂Ck, 1
2D2r ≤ dN (y, yk) ≤ D1r. By 

Lemma C.5, any for v ∈ ∂ι̃k(Ck), 1
2D2r(1 + O(r)) ≤ ‖v‖Rd ≤ D1r(1 + O(r)). Hence, 1

2D2r + O(r2) ≤
‖v‖Rd ≤ D1r+O(r2). By Lemma C.6 and the triangle inequality, for any v′ ∈ ∂C̃k, 12D2r+O(r2) ≤ ‖v′‖Rd ≤
D1r+O(r2). Since C̃k,0 is convex, we conclude that there is a constant Ω such that |C̃k,0| = Ωrd +O(rd+1). 
By Lemma C.6 and the fact that C̃k,0 is convex, |ι̃k(Ck)| = Ωrd+O(rd+1) = |C̃k,0|(1 +O(r)). By Lemma C.5, 
|Ck| = |ι̃k(Ck)|(1 + O(r))d = |ι̃k(Ck)|(1 + O(r)). Therefore, |C̃k| = |C̃k,0| = |Ck|(1 + O(r)). �
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Proof of Proposition 3.13. We provide a sketch of the proof. Use | ·| to denote the d −1 dimensional Hausdorff 
measure. ∂A denotes the topological boundary of a set A. Suppose BR�

r (yk) ∩ {yi}ni=1 = {yk,1, · · · , yk,Nk
}. 

Suppose Γk,i is the Voronoi face between yk and yk,i.
Step 1 We approximate the Voronoi face Γk,i by a region in a d − 1 dimensional affine subspace in R�.
Suppose the minimizing geodesic intersects the bisector G between y and yk,i at y∗

k,i. Then, by Assump-
tion 3.10 and Proposition 3.2, there is a d − 1 dimensional subspace Sk,i of Ty∗

k,i
N which is perpendicular 

to the tangent vector of the minimizing geodesic at y∗
k,i. If we realize Ty∗

k,i
N as a subspace of R�, then 

the affine subspace y∗
k,i + Sk,i is tangent to G at y∗

k,i. Without loss of generality, we rotate and translate 
the manifold N so that y∗

k,i = 0 and Sk,i is identified with the subspace of R� generated by the first d − 1
standard basis. By Assumption 3.10 and Proposition 3.2, there is an open subset of Sk,i and denote Lk,i to 
be its closure such that for any y ∈ Γk,i, we have

y = (u, g1(u), · · · , g�−d+1(u)), (C.30)

where u ∈ Lk,i ⊂ Rd−1 and gi : Rd−1 → R. Moreover, gj(u) is smooth and gj(0) = 0 and ∇gj(0) =
0. The second order derivative of gi can be bounded by the curvature of N at yk and yk,i. By (1) in 
Assumption 3.10, Γk,i ⊂ Ck ⊂ BR�

r (yk), hence for any y ∈ Γk,i, ‖y − yk‖R� ≤ r. ‖y∗
k,i − yk‖R� ≤

dN (y∗
k,i, yk) = 1

2dN (yk,i, yk)) ≤ 1
2D1r. Since yk,i = 0,

‖y‖R� = ‖y − y∗
k,i‖R� ≤ ‖y − yk‖R� + ‖y∗

k,i − yk‖R� ≤ (1 + 1
2D1)r. (C.31)

By (C.30), for any u ∈ Lk,i, ‖u‖Rd−1 ≤ ‖y‖R� ≤ (1 + 1
2D1)r. Thus, Lk,i is contained in a d −1 dimensional 

ball of radius (1 + 1
2D1)r in Rd−1. Hence

|Lk,i| ≤ |Sd−1|(1 + 1
2D1)d−1rd−1 (C.32)

(C.30) implies that

|Γk,i| = |Lk,i| + O(|Lk,i|
d

d−1 ) = |Lk,i| + O(rd), (C.33)

where we use |Lk,i| ≤ |Sd−1|(1 + 1
2D1)d−1rd−1 in the last step. Moreover,

dR
�

H (∂Γk,i, ∂Lk,i) = max
u∈∂Lk,i

√
g2
1(u) + · · · , g2

�−d+1(u) = O(r2), (C.34)

where dR
�

H is the Hausdorff distance with respect to the Euclidean metric of R�.
Step 2
This step is an analogue of Lemma C.5 when we apply ι̃k to the affine subspace y∗

k,i + Ty∗
k,i
N . If we 

identify both Ty∗
k,i
N and Tyk

N as the subspaces of R�, then we show that Ty∗
k,i
N is a small perturbation 

of Tyk
N when r is small. For simplicity, we rotate and translate the manifold so that yk = 0 and Tyk

N
is generated by the first d standard orthonormal basis {e1, · · · , ed} of R�. By the manifold structure of N , 
there is an orthonormal basis {e′1, · · · , e′d} of Ty∗

k,i
N with e′i = ei + O(r2). By Proposition C.4 and the 

similar argument in Lemma C.5, we can show that ι̃k restricted on the affine subspace y∗
k,i + Ty∗

k,i
N is a 

1 + O(r) bi-Lipschitz homeomorphism.
Step 3
For simplicity, denote ι̃k(y∗

k,i+Lk,i) by ι̃k(Lk,i), denote ι̃k(y∗
k,i+∂Lk,i) by ι̃k(∂Lk,i) and denote ∂ι̃k(y∗

k,i+
Lk,i) by ∂ι̃k(Lk,i). Since ι̃k restricted on the affine subspace y∗

k,i + Ty∗ N is homeomorphism, ∂ι̃k(Lk,i) =
k,i
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ι̃k(∂Lk,i). Moreover, Lemma C.5 shows that ι̃k restricted on BR�

r (yk) ∩ N is a homeomorphism. Hence, 
∂ι̃k(Γk,i) = ι̃k(∂Γk,i). Since ι̃k is a projection,

dR
d

H (∂ι̃k(Γk,i), ∂ι̃k(Lk,i)) = dR
d

H (ι̃k(∂Γk,i), ι̃k(∂Lk,i)) ≤ dR
�

H (∂Γk,i, ∂Lk,i) = O(r2), (C.35)

where we use (C.34) in the last step. Since ι̃k is a projection, ι̃k(Lk,i) is a subset of a d − 1 dimensional 
affine subspace of Rd. Since ι̃k restricted on the affine subspace y∗

k,i + Ty∗
k,i
N is a 1 + O(r) bi-Lipschitz 

homeomorphism,

|Lk,i| = |ι̃k(Lk,i)|(1 + O(r)). (C.36)

Step 4
Recall in the step (4) in Algorithm 1, we find the Voronoi cell decomposition of {0, ̃ιk(yk,1), · · · , ̃ιk(yk,Nk

)}
in Rd. The Voronoi cell containing 0 is C̃k,0. The Voronoi face between 0 and ι̃k(yk,i) is denoted as F̃k,i. If 
y ∈ ∂Γk,i, then there is a third point yk,j such that dN (y, yk) = dN (y, yk,i) = dN (y, yk,j). By using the 
similar argument in Lemma C.6, we can show that

dR
d

H (∂ι̃k(Γk,i), ∂F̃k,i) = O(r2). (C.37)

By (C.35), we have

dR
d

H (∂ι̃k(Lk,i), ∂F̃k,i) = O(r2). (C.38)

Step 5
By (1) in Assumption 3.10, Ck ⊂ BR�

r (yk) ∩ N . Since ι̃k is a projection, ι̃k(Ck) is in the ball of radius 
r centered at 0 in Rd. By Lemma C.6, C̃k is in the ball of radius 2r centered at 0 in Rd, when r is small 
enough. F̃k,i is a convex polygon and is in a d − 1 dimensional affine subspace Hk,i in Rd. We know that 
∂F̃k,i = ∪jCj , where each Cj is a d − 2 dimensional convex polygon. Each Cj is a ball of radius 2r. Hence, 
we have Hd−2(∂F̃k,i) = O(rd−2) and any O(r2) neighborhood of ∂F̃k,i in Hk,i has d − 1 Hausdorff measure 
O(rd). Since dR

d

H (∂ι̃k(Lk,i), ∂Γ̃k,i) = O(r2) and ι̃k(Lk,i) is a subset of a d − 1 dimensional affine subspace of 
Rd, we rotate and translate ι̃k(Lk,i) so that ∂ι̃k(Lk,i) is in a O(r2) neighborhood of ∂Γ̃k,i in Hk,i. Therefore,

|ι̃k(Lk,i)| = |F̃k,i| + O(rd) (C.39)

Combine (C.32), (C.33), (C.36) and (C.39), we have

|Γk,i| = |F̃k,i| + O(rd). (C.40)

If y� = yk,i ∈ BR�

r (yk), then Ãkl = |F̃k,i|. So, |Γk�| = Ãkl + O(rd). Similarly, |Γ�k| = |Γk�| = Ãkl + O(rd). 
Hence, |Γk�| = Ãkl+Ãkl

2 + O(rd) = Ak� + O(rd). If Ak� ≥ a1r
d, we automatically have the conclusion. If 

Ak� < a1r
d, then |Γk�| = O(rd) and |Γ̃k�| = a1r

d. So, we also have |Γk�| = |Γ̃k�| + O(rd). �
Appendix D. Other standard time discretizations

Lemma D.1 below gives the maximum principle, and exponential convergence for an explicit scheme under 
Courant-Friedrichs-Lewy (CFL) condition. Lemma D.2 below gives the unconditional maximum principle, 
and exponential convergence for an implicit scheme.
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Lemma D.1. Let η̃i be the approximated jump rate and P̃ij be the approximated transition probability defined 
in (3.80). Let Δt be the time step and consider the explicit scheme for (3.79)

ρn+1
i |C̃i| − ρni |C̃i|

Δt
=

⎛
⎝ ∑

j∈VF(i)

η̃jP̃ijρ
n
j |C̃j | − η̃iρ

n
i |C̃i|

⎞
⎠ . (D.1)

With the detailed balance property (3.81), and the CFL condition for Δt

Δt ≤ 1
η̃i

= 2|C̃i|πi∑
j∈VF(i)

πi+πj

|yi−yj | |Γ̃ij |
, (D.2)

we have

(i) the conversational law for ρk+1
i |C̃i|, i.e.

∑
i

ρk+1
i |C̃i| =

∑
i

ρki |C̃i|; (D.3)

(ii) the equivalent updates for uk+1
i = ρk+1

i

πi

uk+1 = (I + ΔtQ)uk, Q := {bij} with bij :=
{

−η̃i, j = i;
η̃iP̃ji, j �= i;

(D.4)

(iii) the maximum principle for ρi

πi

max
i

j
ρk+1
j

πj
≤ max

j

ρkj
πj

. (D.5)

(iv) the �∞ contraction

max
i

∣∣∣∣∣ρ
k+1
i

πi
− 1

∣∣∣∣∣ ≤ max
i

∣∣∣∣ρkiπi
− 1

∣∣∣∣ ; (D.6)

(v) the exponential convergence

∥∥∥∥ρkiπi
− 1

∥∥∥∥
�∞

≤ c|λ2|k, |λ2| < 1, (D.7)

where λ2 is the second eigenvalue (in terms of the magnitude) of (I + ΔtQ).

Lemma D.2. Let η̃i be the approximated jump rate and P̃ij be the approximated transition probability defined 
in (3.80). Let Δt be the time step and consider the implicit scheme

ρn+1
i

πi
= ρni

πi
− η̃iΔt

ρn+1
i

πi
+ Δt

∑
j∈VF(i)

η̃iP̃ji

ρn+1
j

πj
. (D.8)

We have the following unconditional properties:
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(i) the conversational law for ρk+1
i |C̃i|, i.e.

∑
i

ρk+1
i |C̃i| =

∑
i

ρki |C̃i|; (D.9)

(ii) the equivalent updates for uk+1
i = ρk+1

i

πi
with same Q in (D.4)

(I − ΔtQ)uk+1 = uk; (D.10)

(iii) the maximum principle for ρi

πi

max
i

ρk+1
j

πj
≤ max

j

ρkj
πj

. (D.11)

(iv) the �∞ contraction

max
i

∣∣∣∣∣ρ
k+1
i

πi
− 1

∣∣∣∣∣ ≤ max
i

∣∣∣∣ρkiπi
− 1

∣∣∣∣ ; (D.12)

(v) the exponential convergence

∥∥∥∥ρkiπi
− 1

∥∥∥∥
�∞

≤ c|λ2|k, |λ2| < 1, (D.13)

where λ2 is the second eigenvalue (in terms of the magnitude) of (I − ΔtQ)−1.

The proof of the two lemmas is same as Proposition 3.15 and we omit it. The advantage of the explicit 
scheme (D.1) is its efficiency but the disadvantage is the requirement of CFL condition on Δt; see (D.2). 
Indeed, the convergence rate for the explicit scheme (D.1) is very slow since the spectral gap vanishes 
as Δt → 0. On the other hand, the unconditionally stable implicit scheme (D.8) gives the exponential 
convergence (D.13) with fast rate when we take Δt large enough but it is time-consuming to solve the 
inverse matrix in practice.

Appendix E. Computations of source term in von Mises-Fisher’s ground-truth distribution

Recall the definition of von Mises-Fisher’s distribution with oscillated parameters. We compute the source 
term in (4.6)

g(θ, ϕ, t) =ρ
[
κ2η2

θ − κη + κηθcot θ + 1
sin2 θ

(κ2η2
ϕ + κηϕϕ) − C ′

C
κ′ − (κ′η + κηt)

]
,

C ′/C = sinhκ− κ cosh κ

κ sinhκ
.

(E.1)

Using

ηθ = − cos a sin θ + sin a cos θ cos(ϕ− b), ηθθ = − cos a cos θ − sin a sin θ cos(ϕ− b) = −η,

ηϕ = − sin a sin θ sin(ϕ− b), ηϕϕ = − sin a sin θ cos(ϕ− b) = cos a cos θ − η,

ηt = −a′ sin a cos θ + a′ cos a sin θ cos(ϕ− b) + b′ sin a sin θ sin(ϕ− b).
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We obtain

g(θ, ϕ, t)
ρ

=κ2[η2
θ +

η2
ϕ

sin2 θ
] + κ[−η + ηθcot θ − sin a cos(ϕ− b)

sin θ
] − C ′

C
κ′ − (κ′η + κηt),

=κ2[η2
θ + sin2 a sin2(ϕ− b)] + κ[−η + ηθcot θ − sin a cos(ϕ− b)

sin θ
] − C ′

C
κ′ − (κ′η + κηt),

=κ2[η2
θ + sin2 a sin2(ϕ− b)] + κ[−η − cos a cos θ − sin a sin θ cos(ϕ− b)] − C ′

C
κ′ − (κ′η + κηt),

=κ2[η2
θ + sin2 a sin2(ϕ− b)] − 2κη − C ′

C
κ′ − (κ′η + κηt),

which gives the source term (4.7).

References

[1] https://commons .wikimedia .org /wiki /file :pangaea _continents .png.
[2] Christopher Amante, Barry W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and 

Analysis, US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental 
Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, 
2009.

[3] Dominique Bakry, Ivan Gentil, Michel Ledoux, et al., Analysis and Geometry of Markov Diffusion Operators, vol. 103, 
Springer, 2014.

[4] Jonathan Bates, The embedding dimension of Laplacian eigenfunction maps, Appl. Comput. Harmon. Anal. 37 (3) (2014) 
516–530.

[5] John K. Beem, Pseudo-Riemannian manifolds with totally geodesic bisectors, Proc. Am. Math. Soc. 49 (1) (1975) 212–215.
[6] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput. 15 (6) 

(2003) 1373–1396.
[7] Pierre Bérard, Gérard Besson, Sylvain Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal. 

GAFA 4 (4) (1994) 373–398.
[8] Tyrus Berry, Dimitrios Giannakis, John Harlim, Nonparametric forecasting of low-dimensional dynamical systems, Phys. 

Rev. E 91 (3) (2015) 032915.
[9] Tyrus Berry, John Harlim, Nonparametric uncertainty quantification for stochastic gradient flows, SIAM/ASA J. Uncer-

tain. Quantificat. 3 (1) (2015) 484–508.
[10] Jeff Calder, Nicolas Garcia Trillos, Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs, 

Appl. Comput. Harmon. Anal. 60 (2022) 123–175.
[11] Jeff Calder, Nicolas Garcia Trillos, Marta Lewicka, Lipschitz regularity of graph Laplacians on random data clouds, SIAM 

J. Math. Anal. 54 (1) (2022) 1169–1222.
[12] Xiuyuan Cheng, Nan Wu, Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation, Appl. 

Comput. Harmon. Anal. 61 (2022) 132–190.
[13] Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou, Fokker-Planck equations for a free energy functional or Markov process 

on a graph, Arch. Ration. Mech. Anal. 203 (3) (2012) 969–1008.
[14] R.R. Coifman, I.G. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler, Diffusion maps, reduction coordinates, and low dimen-

sional representation of stochastic systems, Multiscale Model. Simul. 7 (2) (2008) 842–864.
[15] Ronald R. Coifman, Stéphane Lafon, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (1) (2006) 5–30.
[16] Peter Deuflhard, Marcus Weber, Robust Perron cluster analysis in conformation dynamics, Linear Algebra Appl. 398 (Mar 

2005) 161–184.
[17] D.L. Donoho, C. Grimes, Hessian eigenmaps: locally linear embedding techniques for high-dimensional data, Proc. Natl. 

Acad. Sci. 100 (10) (2003) 5591–5596.
[18] David B. Dunson, Hau-Tieng Wu, Nan Wu, Spectral convergence of graph Laplacian and heat kernel reconstruction in 

L∞ from random samples, Appl. Comput. Harmon. Anal. 55 (2021) 282–336.
[19] W. E, T. Li, E. Vanden-Eijnden, Optimal partition and effective dynamics of complex networks, Proc. Natl. Acad. Sci. 

105 (23) (Jun 2008) 7907–7912.
[20] E. Weinan, Tiejun Li, Eric Vanden-Eijnden, Applied Stochastic Analysis, Graduate Studies in Mathematics, American 

Mathematical Society, 2019.
[21] E. Weinan, Eric Vanden-Eijnden, Towards a theory of transition paths, J. Stat. Phys. 123 (3) (2006) 503.
[22] E. Weinan, Eric Vanden-Eijnden, Transition-path theory and path-finding algorithms for the study of rare events, Annu. 

Rev. Phys. Chem. 61 (1) (Mar 2010) 391–420.
[23] Ivar Ekeland, Roger Temam, Convex Analysis and Variational Problems, vol. 28, SIAM, 1999.
[24] Matthias Erbar, Gradient flows of the entropy for jump processes, Ann. Inst. Henri Poincaré Probab. Stat. 50 (3) (Aug 

2014) 920–945.
[25] Antonio Esposito, Francesco S. Patacchini, André Schlichting, Dejan Slepčev, Nonlocal-interaction equation on graphs: 

gradient flow structure and continuum limit, Arch. Ration. Mech. Anal. 240 (2) (2021) 699–760.

https://commons.wikimedia.org/wiki/file:pangaea_continents.png
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF2F0E192ABF0D83134427394CC079062s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF2F0E192ABF0D83134427394CC079062s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF2F0E192ABF0D83134427394CC079062s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF2F0E192ABF0D83134427394CC079062s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib62AFF8BBD2C013D99FC0D0B6C2BF49E9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib62AFF8BBD2C013D99FC0D0B6C2BF49E9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibD2BBC21ACBE193D83257497C563E02E6s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibD2BBC21ACBE193D83257497C563E02E6s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib0B2C5629BC9C3247C9F8B4B26D8C6B3Cs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibE0B326BF41CAD53D2F403386DAE945A9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibE0B326BF41CAD53D2F403386DAE945A9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF2B4EF0CD108E141BBA8FDBD1E42A91As1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF2B4EF0CD108E141BBA8FDBD1E42A91As1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibE328E0998686A3B211D2897A0DA94BECs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibE328E0998686A3B211D2897A0DA94BECs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib92DB916D249BCC67B32503F1C20B9D45s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib92DB916D249BCC67B32503F1C20B9D45s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC914C37216DDF5403A0968443C7C9930s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC914C37216DDF5403A0968443C7C9930s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF9515A0589FD8EDA61CE1F90CF8F191Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF9515A0589FD8EDA61CE1F90CF8F191Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib63D9D41270DE16875646FC1403D290B1s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib63D9D41270DE16875646FC1403D290B1s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib35D27F745B998512B66B10AA2ECCCEEEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib35D27F745B998512B66B10AA2ECCCEEEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib21F1253E3A1A8700906799F8AB20BF6Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib21F1253E3A1A8700906799F8AB20BF6Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib76E4A613A520BFF51A418665422C9E9Ds1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibDC594ACC77694FA6F551FC25E804ACAEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibDC594ACC77694FA6F551FC25E804ACAEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibD2757B322892C6E341CE3ADE7438058Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibD2757B322892C6E341CE3ADE7438058Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibA3A85F05482F0F3431B5B5DE88E4C2F0s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibA3A85F05482F0F3431B5B5DE88E4C2F0s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib621483EABF3FF05E02F1F9A11AE416D7s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib621483EABF3FF05E02F1F9A11AE416D7s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib6C5035E7DFF39A91B1F4F84D1775E928s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib6C5035E7DFF39A91B1F4F84D1775E928s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibB4A07CFE4EA68B0676D0F65F4AF8E500s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib82ADF4B8CD85BD9348754D6865A31147s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib82ADF4B8CD85BD9348754D6865A31147s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib986D90A12849B1C0FA2B782D8E6B2E08s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibDA9FF04E0E907DCF1D2815DA426474F4s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibDA9FF04E0E907DCF1D2815DA426474F4s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib93A70F472C4B4B12C8B9C3280015D21Ds1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib93A70F472C4B4B12C8B9C3280015D21Ds1


Y. Gao et al. / Appl. Comput. Harmon. Anal. 62 (2023) 261–309 309
[26] Robert Eymard, Thierry Gallouët, Raphaèle Herbin, Finite volume methods, in: Handbook of Numerical Analysis, vol. 7, 
2000, pp. 713–1018.

[27] Yuan Gao, Guangzhen Jin, Jian-Guo Liu, Inbetweening auto-animation via Fokker-Planck dynamics and thresholding, 
Inverse Probl. Imaging 15 (5) (2021) 843.

[28] Yuan Gao, Tiejun Li, Xiaoguang Li, Jian-Guo Liu, Transition path theory for Langevin dynamics on manifold: optimal 
control and data-driven solver, Multiscale Model. Simul. (2022), in press, arXiv :2010 .09988, 2022.

[29] Yuan Gao, Jian-Guo Liu, A note on parametric Bayesian inference via gradient flows, Ann. Math. Sci. Appl. 2 (2020) 
261–282.

[30] Yuan Gao, Jian-Guo Liu, Random walk approximation for irreversible drift-diffusion process on manifold: ergodicity, 
unconditional stability and convergence, arXiv preprint, arXiv :2106 .01344, 2021.

[31] Yuan Gao, Jian-Guo Liu, Revisit of macroscopic dynamics for some non-equilibrium chemical reactions from a Hamiltonian 
viewpoint, J. Stat. Phys. 189 (2) (2022) 1–57.

[32] Yuan Gao, Jian-Guo Liu, A selection principle for weak KAM solutions via Freidlin-Wentzell large deviation principle of 
invariant measures, arXiv preprint, arXiv :2208 .11860, 2022.

[33] Yuan Gao, Jian-Guo Liu, Thermodynamic limit of chemical master equation via nonlinear semigroup, arXiv preprint, 
arXiv :2205 .09313, 2022.

[34] David Gilbarg, Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224, Springer, 2015.
[35] Elton P. Hsu, Stochastic Analysis on Manifolds, vol. 38, American Mathematical Soc., 2002.
[36] Peter W. Jones, Mauro Maggioni, Raanan Schul, Manifold parametrizations by eigenfunctions of the Laplacian and heat 

kernels, Proc. Natl. Acad. Sci. 105 (6) (2008) 1803–1808.
[37] Stephane Lafon, Ann B. Lee, Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph 

partitioning, and data set parameterization, IEEE Trans. Pattern Anal. Mach. Intell. 28 (9) (2006) 1393–1403.
[38] Rongjie Lai, Jianfeng Lu, Point cloud discretization of Fokker–Planck operators for committor functions, Multiscale Model. 

Simul. 16 (2) (2018) 710–726.
[39] Lei Li, Jian-Guo Liu, Large time behaviors of upwind schemes by jump processes, Math. Comput. 89 (2020) 2283–2320.
[40] Tiejun Li, Jian Liu, E. Weinan, Probabilistic framework for network partition, Phys. Rev. E 80 (2) (2009) 026106.
[41] Anning Liu, Jian-Guo Liu, Yulong Lu, On the rate of convergence of empirical measure in ∞-Wasserstein distance for 

unbounded density function, Q. Appl. Math. 77 (4) (2019) 811–829.
[42] Jan Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (8) (Oct 2011) 2250–2292.
[43] Philipp Metzner, Christof Schütte, Eric Vanden-Eijnden, Transition path theory for Markov jump processes, Multiscale 

Model. Simul. 7 (3) (Jan 2009) 1192–1219.
[44] Alexander Mielke, D.R. Michiel Renger, Mark A. Peletier, On the relation between gradient flows and the large-deviation 

principle, with applications to Markov chains and diffusion, Potential Anal. 41 (4) (Nov 2014) 1293–1327.
[45] Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, Ioannis G. Kevrekidis, Diffusion maps, spectral clustering and reaction 

coordinates of dynamical systems, Appl. Comput. Harmon. Anal. 21 (1) (2006) 113–127.
[46] Jacobus W. Portegies, Embeddings of Riemannian manifolds with heat kernels and eigenfunctions, Commun. Pure Appl. 

Math. 69 (3) (2016) 478–518.
[47] Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Martin Held, John D. Chodera, Christof Schütte, 

Frank Noé, Markov models of molecular kinetics: generation and validation, J. Chem. Phys. 134 (17) (May 2011) 174105.
[48] Mary A. Rohrdanz, Wenwei Zheng, Mauro Maggioni, Cecilia Clementi, Determination of reaction coordinates via locally 

scaled diffusion map, J. Chem. Phys. 134 (12) (2011) 124116.
[49] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290 (5500) (2000) 

2323–2326.
[50] Christof Schütte, Frank Noé, Jianfeng Lu, Marco Sarich, Eric Vanden-Eijnden, Markov state models based on milestoning, 

J. Chem. Phys. 134 (20) (May 2011) 204105.
[51] Amit Singer, H.-T. Wu, Vector diffusion maps and the connection Laplacian, Commun. Pure Appl. Math. 65 (8) (2012) 

1067–1144.
[52] Amit Singer, Hau-Tieng Wu, Spectral convergence of the connection Laplacian from random samples, Inf. Inference, J. 

IMA 6 (1) (2016) 58–123.
[53] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 

290 (5500) (2000) 2319–2323.
[54] Nicolás García Trillos, Moritz Gerlach, Matthias Hein, Dejan Slepčev, Error estimates for spectral convergence of the 

graph Laplacian on random geometric graphs toward the Laplace–Beltrami operator, Found. Comput. Math. 20 (4) 
(2020) 827–887.

[55] Nicolás Garcia Trillos, Dejan Slepčev, On the rate of convergence of empirical measures in ∞-transportation distance, 
Can. J. Math. 67 (6) (2015) 1358–1383.

[56] Hau-Tieng Wu, Nan Wu, Think globally, fit locally under the manifold setup: asymptotic analysis of locally linear embed-
ding, Ann. Stat. 46 (6B) (2018) 3805–3837.

[57] Amber Yuan, Jeff Calder, Braxton Osting, A continuum limit for the pagerank algorithm, Eur. J. Appl. Math. 33 (3) 
(2022) 472–504.

http://refhub.elsevier.com/S1063-5203(22)00079-3/bib7860808F5B3496BEBE284865D20547BAs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib7860808F5B3496BEBE284865D20547BAs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib484BDA8D5AD40E8D14146F01B4E40041s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib484BDA8D5AD40E8D14146F01B4E40041s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib5CC55C66FE6E30566671E011F9099AECs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib5CC55C66FE6E30566671E011F9099AECs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib59EFC8867C1AE8CD5E0B8B0C8C66CDD6s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib59EFC8867C1AE8CD5E0B8B0C8C66CDD6s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib0AD42103DAAE7D755D27C458C91212B6s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib0AD42103DAAE7D755D27C458C91212B6s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibEC5D6ED34D0B44A7B5646C3EFA90EE50s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibEC5D6ED34D0B44A7B5646C3EFA90EE50s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib92FE97508C0313630C73955A82170A6Ds1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib92FE97508C0313630C73955A82170A6Ds1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC2F04169A5DC96F175B4848EA30E2635s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC2F04169A5DC96F175B4848EA30E2635s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC565A61E4694EAE3D8B259347C210736s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibFE5EDC0C12F160FF2E901C4B4BC11541s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib1C308ABEB0D9ACEA343E8D0ED55D64E0s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib1C308ABEB0D9ACEA343E8D0ED55D64E0s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib145ADD9BE639A23473A7DB80ABC3A3F8s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib145ADD9BE639A23473A7DB80ABC3A3F8s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib129CC001A3576A5765B32780FAACCA85s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib129CC001A3576A5765B32780FAACCA85s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib994C13EE05F761C5168C8A20DF1BD25Bs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibF570F22F465954BCBAEFB93B1020C573s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib4518587C2DFB66F02C41C4D4F23A4B1Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib4518587C2DFB66F02C41C4D4F23A4B1Fs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib6077F7DDD33374B0D424BE0F12DCCFC1s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib884ACAC9BDD5A4A42FFC00CDF635AB8Es1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib884ACAC9BDD5A4A42FFC00CDF635AB8Es1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibAC554CC53EAA962EBC0EA8DA19115A47s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibAC554CC53EAA962EBC0EA8DA19115A47s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib4046917452AFBD140411B113CF848DC9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib4046917452AFBD140411B113CF848DC9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib95192423076D1714D0CEB588E3A13BABs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib95192423076D1714D0CEB588E3A13BABs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib94BDF2882626FC56A23907378811ED12s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib94BDF2882626FC56A23907378811ED12s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibAACF5029C4DFE002E6E24DF24036407Bs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibAACF5029C4DFE002E6E24DF24036407Bs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC4E8CEA6C96488DB9D899215745A5296s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibC4E8CEA6C96488DB9D899215745A5296s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib7628342B419DB694F4676EE33A66CA32s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib7628342B419DB694F4676EE33A66CA32s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib03721E08CF4807DD8C67003BF2B16AA9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib03721E08CF4807DD8C67003BF2B16AA9s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib28C17099D365B806B9C63CBE57FEC8BFs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib28C17099D365B806B9C63CBE57FEC8BFs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib4BBCB2CD887C1F6765007155A07C3432s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib4BBCB2CD887C1F6765007155A07C3432s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibEB00E59209851CB7EC8C48C53D1854BEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibEB00E59209851CB7EC8C48C53D1854BEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bibEB00E59209851CB7EC8C48C53D1854BEs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib244031F27EDCB2F14AA219E290CA19ECs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib244031F27EDCB2F14AA219E290CA19ECs1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib868A6093CF030EE26EA3BEAE9EBE5614s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib868A6093CF030EE26EA3BEAE9EBE5614s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib0210BCCFE740356634E118D746424244s1
http://refhub.elsevier.com/S1063-5203(22)00079-3/bib0210BCCFE740356634E118D746424244s1

	Data-driven efficient solvers for Langevin dynamics on manifold in high dimensions
	1 Introduction
	1.1 Problem set up and goals
	1.2 Practical difficulties and mathematical implementations

	2 Review of nonlinear dimension reduction and diffusion map
	3 Solution to the Fokker-Planck equation on N
	3.1 Construction of the Voronoi tessellation and the finite volume scheme on manifold N
	3.2 Associated Markov process, detailed balance and ergodicity
	3.3 Truncation error estimate, stability and convergence of the finite volume scheme (3.12)
	3.4 Approximation of Voronoi cells on manifold
	3.5 Unconditionally stable explicit time stepping and exponential convergence

	4 Simulations for Fokker-Planck solver
	4.1 Comparison with a ground-truth dynamics on sphere
	4.2 Example I: Fokker-Planck evolution on dumbbell
	4.3 Example II: Fokker-Planck evolution on Klein bottle
	4.4 Example III: the ‘‘breakup’’ of Pangaea via Fokker-Planck evolution on sphere

	5 Discussion
	Acknowledgment
	Appendix A Theorems about embedding by eigenfunctions of Laplacian
	Appendix B Proof of Proposition 3.2
	Appendix C Proof of Proposition 3.12 and Proposition 3.13
	Appendix D Other standard time discretizations
	Appendix E Computations of source term in von Mises-Fisher’s ground-truth distribution
	References


