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A NEW METHOD TO OBTAIN UNIFORM DECAY RATES FOR
MULTIDIMENSIONAL WAVE EQUATIONS WITH NONLINEAR

ACOUSTIC BOUNDARY CONDITIONS∗
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Abstract. In this paper, we investigate the uniform stability of a class of nonlinear acoustic
wave motions with boundary and localized interior damping. Here the damping and potential in
the boundary displacement equation are nonlinear. Moreover, the nonlinear system contains the
localized interior damping term, which indicates that there is a thin absorption material and flow
resistance on the endophragm of the boundary. Since some lower-order term in the nonlinear wave
system is not below the energy level, the “compactness-uniqueness” method is not suitable for the
problem. Our main purpose is to present a new method to obtain uniform decay rates for these
damped wave equations with nonlinear acoustic boundary conditions.
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1. Introduction. Since Beale and Rosencrans [6] introduced acoustic boundary
conditions for wave equations in 1974, there has been a variety of research on wave
or other kinds of equations with acoustic boundary conditions; see [3, 5–11, 14, 18]
and references therein. Because of their applicability to many areas, such as noise
reduction and vibration control, the studies about such boundary conditions have
attracted lots of attention.

Let Ω be a bounded domain in Rn with a smooth boundary Γ. Let Γ = Γ0∪Γ1 with
Γ0 and Γ1 closed, disjoint, and nonempty. Denote by ν(x) the outer unit vector normal
to the boundary Γ1. We consider the following acoustic boundary value problem

utt(x, t)−∆u(x, t) + w(x)ut(x, t) = 0, x ∈ Ω, t > 0(1.1)

u(x, t) = 0, x ∈ Γ0, t > 0(1.2)

ut(x, t) + ztt(x, t) + f(zt) + g(z) = 0, x ∈ Γ1, t > 0(1.3)

∂u(x, t)

∂ν
= zt(x, t), x ∈ Γ1, t > 0(1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω(1.5)

z(x, 0) = z0(x), x ∈ Γ1.(1.6)

Here ∆ is the Laplacian operator, f, g are given functions on R, and w(x) ∈ L∞(Ω)
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1304 YUAN GAO, JIN LIANG, AND TI-JUN XIAO

is a cutoff function defined by

w(x) =

{
1, for x ∈ Ωη;
0, for x ∈ Ω/Ωη,

where η > 0 and Ωη := {x ∈ Ω; d(x,Γ) ≤ η}.
This model (for n = 3) describes a fluid undergoing small irrotational perturba-

tions from rest in the domain Ω. The portion Γ1 of its surface is called interface;
each point on Γ1 reacts to the excess pressure from the fluid like a spring, and the
“springs” are independent of each other; therefore, Γ1 is locally reacting. The function
u represents the velocity potential and z the normal displacement of Γ1. The relation
(1.4) expresses the impenetrability of the boundary Γ1. See [6, 17] for more physical
explanations. For the sake of simplicity, we set all the coefficients to be 1.

In 1976, Beale [5] pointed out for linear systems under the action of the boundary
damping zt (but without any interior damping) that the system energies have no
uniform decay rates. Afterwards, Muñoz Rivera and Qin [18] obtained polynomial
decay of the energies for smooth initial data. We refer the reader to Abbas and Nicaise
[1, 2] for deep studies on asymptotic stability, nonuniform stability, and polynomial
stability for related systems with generalized acoustic boundary conditions.

In [10], Graber considered porous acoustic boundary conditions, with the interface
described by

ut +m(x)ztt + f1(x)zt + g1(x)z = 0, x ∈ Γ1, t > 0;

∂u

∂ν
+ θ(ut) = h(x)η(zt), x ∈ Γ1, t > 0(1.7)

(m, f1, g1, h, θ, and η being given functions), and obtained (among others) uniform
decay rates thanks to the additional dissipative term θ(ut); see also [11] and the
references therein for related studies. Recently, Vicenti and Frota [19] took into
account acoustic boundary conditions to a nonlocally reacting boundary, with the
interface described by

ρ0ut(x, t) +mztt(x, t)− c2∆Γz + f(zt) + rz = 0, x ∈ Γ1, t > 0,(1.8)

∂u(x, t)

∂ν
= zt(x, t), x ∈ Γ1, t > 0,

where ρ0,m, c are positive constants, r ≥ 0, and ∆Γ is the Laplace–Beltrami operator;
they put a (nonlinear) internal localized damping term in the wave equation to achieve
uniform stability successfully.

The aim of this paper is to obtain uniform stability of the system (1.1)–(1.6).
The system contains an internal localized damping term w(x)ut in (1.1) as in [19]
(for simplicity we here consider only linear dampings with coefficient 1 close to the
boundary), which indicates that there is a thin absorption material with the thickness
of η > 0 and flow resistance on the endophragm of Γ (cf. [17, section 6.2]). On the
other hand, the interface Γ1 is locally reacting (as in the original work [5, 6]), in
contrast to that in [19]. That is, our system does not contain such a term as −c2∆Γz in
(1.8). However, it is the lack of this term that brings about essential difficulty in doing
stability analysis. Actually, the integral

∫
Γ1
z2dΓ is no longer a lower-order term below

the energy level since the energy E(t) (see (3.1) below) does not contain
∫

Γ1
|∇T z|2dΓ.

This would result in the failure of the compactness-uniqueness argument (compare
with the proof for [19, (3.36)], δ there representing z here). The argument is a general
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A NEW METHOD TO OBTAIN UNIFORM DECAY RATES 1305

method used to absorb lower-order terms (cf. [10,11,13]). Therefore, we have to find
some new ideas to deal with the problem. In this paper, we present a new method
to obtain uniform decay rates for the damped wave equations with nonlinear acoustic
boundary conditions.

This paper is organized as follows. In section 2, we give a well-posedness result by
the theory of nonlinear semigroups. Section 3 is devoted to presenting our stability
theorem; we will combine flexibly the method of convex functions (as in Lasiecka and
Tataru [13] and Liu and Zuazua [15]), the method of Lyapunov functions (as in [15]),
and the cutoff technique (as in Martinez [16]) to prove the uniform stability of the
energy.

2. Well-posedness. We let

V (Ω) = {u(x) ∈ H1(Ω), u|Γ0 = 0},

with the inner product and norm

(u, v)V :=

∫
Ω

∇u(x) · ∇v(x)dx, |u|V :=

∫
Ω

|∇u(x)|2dx.

Note that Poincare’s inequality holds in V (Ω),

(2.1)

∫
Ω

u2dx ≤ c
∫

Ω

|∇u|2dx,

with some constant c > 0. For the spaces L2(Ω) and L2(Γ1), we define the inner
products and norms by, as usual,

(u, v) =

∫
Ω

u(x)v(x)dx, |u| =
(∫

Ω

|u(x)|2dx
) 1

2

,

(φ, ψ)Γ1
=

∫
Γ1

φ(x)ψ(x)dΓ, |φ|Γ1
=

(∫
Γ1

|φ(x)|2dΓ

) 1
2

.

Using the notations given above, we define the “finite energy space” that will be
associated with “weak solutions” as

H := V (Ω)× L2(Ω)× L2(Γ1)× L2(Γ1),

where the norm on H is given by

|(u, v, z, z̃)|2H = |u|2V + |v|2 + |z|2Γ1
+ |z̃|2Γ1

.

Now we reduce (1.1)–(1.6) to an abstract Cauchy problem,

d

dt
U(t) = AU(t),

U(0) = U0,

where U(t) = (u, ut, z, zt)
T is a vector in the Hilbert space H and A : D(A) ⊂ H → H

is an operator with the domain

D(A) =




u
v
z
z̃

 ∈ H; v ∈ V (Ω), ∆u ∈ L2(Ω),
∂u

∂ν

∣∣∣
Γ1

= z̃

 .D
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1306 YUAN GAO, JIN LIANG, AND TI-JUN XIAO

The action of the operator A is given by the matrix

A


u
v
z
z̃

 =


v

∆u− wv
q

−v − f(z̃)− g(z)

 .

Next we show the well-posedness of the nonlinear system (1.1)–(1.6) by the
nonlinear monotone operator method. For this, we need some conditions on f and g.

Assumption (A1). The functions f, g ∈ C(R) are monotone nondecreasing such
that g(0) = 0, f(0) = 0, g′ ∈ L∞(R), and

(2.2) |f(s)| ≤ C|s| for |s| ≥ 1,

where C > 0 is a constant.
We note that f(z) ∈ L2(Γ1) whenever z ∈ L2(Γ1), under the condition (2.2).

Theorem 2.1. Suppose that Assumption (A1) holds. Then for U(0) ∈ H, the
system (1.1)–(1.6) has a unique mild solution U(t;U0) ∈ C([0,∞);H) such that

(2.3) ‖U(t;U1)− U(t;U2)‖H ≤ eωt‖U1 − U2‖H for U1, U2 ∈ H, t ≥ 0,

with some constant ω > 0. Moreover, if U(0) ∈ D(A), then U(t;U0) ∈W 1,1
loc (0,∞;H)

is a strong solution of (1.1)–(1.6).

Proof. For Ui = (ui, vi, zi, z̃i)
T ∈ D(A), i = 1, 2, we have

(AU1 −AU2, U1 − U2)

=

∫
Γ1

(z1 − z2)(z̃1 − z̃2)− (z̃1 − z̃2)(g(z1)− g(z2))

− (z̃1 − z̃2)(f(z̃1)− f(z̃2))dΓ−
∫

Ω

w(v1 − v2)2dx

≤ω|U1 − U2|2H

for some constant ω > 0. Therefore, ωI −A is monotone.
Next, we show that the range of λI −A is all of H for λ > ω. To the end, we let

(x1, x2, x3, x4) ∈ H and try to find U = (u1, u2, u3, u4) ∈ D(A) such that

(2.4)


λu1 − u2 = x1,

λu2 −∆u1 + wu2 = x2,

λu3 − u4 = x3,

λu4 + u2 + f(u4) + g(u3) = x4.

To prove the existence of solution U to (2.4), we apply the method of perturbation of
maximal monotone operator as in [12,13].

Define N : L2(Γ1)→ H
3
2 (Ω) such that for φ ∈ L2(Γ1), Nφ = ψ is the solution of

the following equation: 
∆ψ = 0,

ψ|Γ0
= 0,

∂ψ

∂ν

∣∣∣
Γ1

= φ;
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moreover, define

Au = −∆u, D(A) =

{
u ∈ H2(Ω); u|Γ0

= 0,
∂u

∂ν

∣∣∣
Γ1

= 0

}
,

which can be extended to a continuous operator from V to V ′ (with respect to the
L2 duality).

From the last two equations of (2.4), one has

(2.5) λu4 + u2 + f(u4) + g

(
x3 + u4

λ

)
= x4.

We define a scalar function J on R4 by

J(t, s, s0, s1) = λt+ s+ f(t) + g

(
s0 + t

λ

)
− s1.

By Assumption(A1), we know that J is a continuous function, which is strictly in-
creasing in t satisfying

lim
t→±∞

J(t, s, s0, s1) = ±∞.

Therefore, for any (s, s0, s1) ∈ R3, there exists a unique t, denoted by −F (s, s0, s1),
such that J(t, s, s0, s1) = 0. It is clear that the implicit function F is also a continuous
function, being strictly increasing in the first variable. From (2.5) we obtain

u4 = −F (u2, x3, x4).

Substituting it and u1 = x1+u2

λ into the second equation of (2.4), we get

(2.6) λu2 +A

(
x1 + u2

λ
+NF (u2, x3, x4)

)
+ wu2 = x2.

Define two operators B1, B2 from V to V ′ by

B1v = ANF (v, x3, x4), B2v =
1

2
λv +A

(
x1 + v

λ

)
+ wv.

Then B1 is maximal monotone (it may be written as the subgradient of a convex
functional as in [13, p. 514] and [12, p. 89]), and B2 is monotone and continuous.
From [4, Corollary 1.3, Chapter 2], we see that B1 + B2 is maximal monotone in
V × V ′. Therefore, (2.6) has a solution u2 ∈ V . Accordingly, we see that λI − A
is surjective, and so ωI − A is maximal monotone. Therefore, from the nonlinear
semigroup theory, we obtain the desired conclusion.

3. A new method to obtain uniform decay rates. We define the energy of
the system (1.1)–(1.6) as

(3.1) E(t) =
1

2

∫
Ω

|∇u|2 + u2
tdx+

1

2

∫
Γ1

z2
t dΓ +

∫
Γ1

G(z)dΓ,

where G(t) :=
∫ t

0
g(s)ds. Under Assumption (A1), it is easy to see that the following

energy identity holds for strong solutions:

(3.2) E(t) = E(0)−
∫ t

0

∫
Ω

wu2
tdxdt−

∫ t

0

∫
Γ1

f(zt)ztdΓdt.
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Thus, we see that E(t) is decreasing for all finite energy solutions.
For studying the stability of the system energy, we need more conditions on f

and g.
Assumption(A2). There exists a constant c > 0 such that

(3.3) |f(s)|, |g(s)| ≥ c|s| if |s| ≥ 1.

Assumption(A3).
(a) There exist two strictly increasing C2-functions h1(s), h2(s) : [0,∞)→ [0,∞)

such that

ch1(|s|) ≤ |f(s)| ≤ Ch−1
1 (|s|), |s| ≤ 1(3.4)

h2(|s|) ≤ |g(s)|, |s| ≤ 1.(3.5)

(b) The function h1 satisfies

(3.6) h1(st) ≤ Ch1(s)h1(t), s, t ∈ [0,∞),

and there exists an increasing and convex function φ(s) : [0,∞) → [0,∞),
with φ′′(s) positive and bounded on (0, s0) for any s0 > 0, such that

(3.7) φ(|s|2) ≤ hi(|s|)|s|, |s| ≤ 1, i = 1, 2;

here, C, c are positive constants.

Theorem 3.1. Let f, g satisfy Assumptions (A1), (A2), and (A3). Then the
energy of system (1.1)–(1.6) decays to zero, uniformly in initial data with E(0) ≤ r
(for any fixed r > 0). More precisely, we have

E(t) ≤ S
(
t

T0
− 1

)
, t > T0,

for some positive constant T0 > 0; here S(·) is the solution of the ODE

S′(t) + q(S(t)) = 0, with the initial value S(0) = E(0),

the function q(·) being given by q(s) := s− (I + p)−1(s) with p(0) = 0,

p(s) := C̄1ε(s)φ(as), s > 0,

ε(s) :=

[
1 +

C̄2

φ′(as)
+

C̄3√
φ′(as)

h1

(
C√
φ′(as)

)]−1

(C > 0 is the constant in (3.4), and a, C̄1, C̄2, C̄3 are positive constants which depend
continuously on E(0)).

Proof. We fix r > 0 and assume E(0) ≤ r; also, we may and do assume E(t) > 0
for t ≥ 0 (in the other case, E(t) ≡ 0). Throughout the proof, C1, C2, C

′
2, and C3

denote generic positive constants, which may depend on r and may vary from line to
line. Moreover, we only need to deal with the strong solution case (the general case
can be handled by a density argument owing to (2.3)).

Step 1. We first introduce an auxiliary function V (t), and estimate V ′(t).
Define

V (t) = E(t) + εψ(E(t))

[∫
Ω

uutdx+

∫
Γ1

zztdΓ +

∫
Γ1

zudΓ

]
,
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where

ψ(s) := φ′(as)

and a, ε ∈ (0, 1), which will be specified later. Differentiating V (t), we obtain

V ′(t) = E′(t) + εψ′(E(t))E′(t)

[∫
Ω

uutdx+

∫
Γ1

zztdΓ +

∫
Γ1

zudΓ

]
+ εψ(E(t))

[∫
Ω

u2
t − |∇u|2 − wutudx+

∫
Γ1

uzt + z2
t + ztu+ zut + zzttdΓ

]
.

From Assumptions (A1) and (A2), we have

(3.8)
z

2
g
(z

2

)
≤ G(z) ≤ g(z)z

and

(3.9) z2 ≤ C1

[z
2
g
(z

2

)]
≤ C1G(z) if |z| ≥ 2,

which implies ∣∣∣∣∫
Ω

uutdx+

∫
Γ1

zztdΓ +

∫
Γ1

zudΓ

∣∣∣∣ ≤ C1

by the use of the Cauchy–Schwarz inequality and (2.1). Accordingly, from (1.3), we
obtain

V ′(t) ≤ E′(t)− C1εψ
′(E(t))E′(t)

+ εψ(E(t))

[∫
Ω

u2
t −

3

4
|∇u|2 + C1wu

2
tdx+

∫
Γ1

C1z
2
t − zg(z)− zf(zt)dΓ

]
≤ E′(t)− C1εE

′(t)

+ εψ(E(t))

[∫
Ω

−u2
t −

1

4
|∇u|2dx+

∫
Γ1

−G(z)− z2
t dΓ

]
+ εψ(E(t))

[∫
Ω

2u2
t + C1wu

2
t −
|∇u|2

2
dx+

∫
Γ1

C1z
2
t − zf(zt)dΓ

]
≤ E′(t)− C1εE

′(t)− 1

2
εψ(E(t))E(t)

+ εψ(E(t))

[∫
Ω

2u2
t + C1wu

2
tdx+

∫
Γ1

C1z
2
t − zf(zt)dΓ

]
,

noting

ψ′(E(t)) = aφ′′(aE(t)) ≤ sup{φ′′(s); s ∈ (0, r]} <∞

due to Assumptions (A3).
Step 2. For dealing with the term

∫
Ω
u2
t , we need the following lemma, which will

be proved later.

Lemma 3.2. There exist two positive constants T1 and C ′, depending on r and n,
such that for any T > T1,
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1310 YUAN GAO, JIN LIANG, AND TI-JUN XIAO∫ T

0

ψ(E(t))

∫
Ω

u2
tdxdt

≤ C ′

T

∫ T

0

ψ(E(t))

∫
Γ1

G(z)dΓdt+ C ′
∫ T

0

−E′(t)dt

+ C ′
∫ T

0

ψ(E(t))

(∫
Ω

wu2
tdx+

∫
Γ1

z2
t + f2(zt)dΓ

)
dt.

(3.10)

Making use of this lemma, we infer that for T > T1,

(3.11)

∫ T

0

V ′(t)dt ≤
∫ T

0

[
E′(t)− C1εE

′(t)− 1

2
εψ(E(t))E(t)

]
dt

+ C1

∫ T

0

εψ(E(t))

∫
Ω

wu2
tdxdt

+ C1

∫ T

0

εψ(E(t))

∫
Γ1

[
z2
t + f2(zt) + |zf(zt)|+

1

T
G(z)

]
dΓdt.

Step 3. Let φ? denote the Legendre transform of φ (see [15]) given by

(3.12) φ?(s) = sφ′−1(s)− φ(φ′−1(s)), s > 0.

Exploiting (3.11), we will control
∫ T

0
V ′(t)dt with the terms∫ T

0

E′(t)dt,

∫ T

0

φ?(ψ(E(t)))dt, −
∫ T

0

ψ(E(t))E(t)dt.

Clearly, by (3.2),

(3.13) I1 := C1

∫ T

0

∫
Ω

εψ(E(t))wu2
tdxdt ≤

∫ T

0

−C1εψ(E(0))E′(t)dt.

Using (3.3) and Young’s inequality, we have

(3.14)

I2 := C1

∫ T

0

∫
Γ1

εψ(E(t))z2
t dΓdt

≤ C1

∫ T

0

∫
G2

εψ(E(t))ztf(zt)dΓdt+ C1

∫ T

0

∫
G1

εψ(E(t))z2
t dΓdt

≤ C1

∫ T

0

εψ(E(t))(−E′(t))dt+ C1

∫ T

0

[
εφ?(ψ(E(t))) + ε

∫
G1

φ(z2
t )dΓ

]
dt

≤ C1

{∫ T

0

εψ(E(0))(−E′(t))dt+

∫ T

0

−εE′(t)dt+ ε

∫ T

0

φ?(ψ(E(t)))dt

}

due to (3.2), (3.7), and (3.4), where

G1 := {x ∈ Γ1; |zt| ≤ 1}, G2 := {x ∈ Γ1; |zt| ≥ 1}.

Moreover, for any τ > 0 with c(τ) := 1
4τ + 1,
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I3 := C1

∫ T

0

εψ(E(t))

∫
Γ1

[
f2(zt) + |zf(zt)|+

1

T
G(z)

]
dΓdt

≤ C1

∫ T

0

εψ(E(t))

∫
Γ1

[
1

T
G(z) + τz2

]
dΓdt

+ C1

∫ T

0

εψ(E(t))

∫
Γ1

c(τ)f2(zt)dΓdt

=: I4 + I5.

Put
R1 := {x ∈ Γ1; |z| ≤ 1}, R2 := {x ∈ Γ1; |z| ≥ 1};

using Young’s inequality and noting

G(z) ≥ 1

2
cz2 for |z| ≥ 1 (by (3.3)) and

z

2
g
(z

2

)
≤ G(z),

we infer from (3.7) and (3.5) that

I4 = C1

∫ T

0

εψ(E(t))

∫
Γ1

[
1

T
G(z) + τz2

]
dΓdt

≤
∫ T

0

∫
R2

C1εψ(E(t))τG(z)dΓdt+ C1

∫ T

0

∫
R1

τεφ(z2)dΓdt

+ C1ετ

∫ T

0

φ?(ψ(E(t)))dt+

∫ T

0

εψ(E(t))

∫
Γ1

C1

T
G(z)dΓdt

≤ C1

{∫ T

0

(
τ +

1

T

)
εψ(E(t))E(t)dt+

∫ T

0

τεE(t)dt+

∫ T

0

τεφ?(ψ(E(t)))dt

}
.

Now, we take T0 = T1 + 12C1. Letting T ≥ T0 and τ = τ(E(T )) with

τ(s) :=
1

12
C−1

1 (1 + ψ(r))−1ψ(s), s > 0,

we then have

(3.15) I4 ≤
1

4

∫ T

0

εψ(E(t))E(t)dt+ C2

∫ T

0

εφ?(ψ(E(t)))dt.

Next, taking t0 ∈ (0, 1] such that
√
c(τ)|f(s)| ≤ 1 if |s| ≤ t0, we define

F1 = {x ∈ Γ1; |zt| ≤ t0}, F2 = {x ∈ Γ1; |zt| ≥ t0}.

Making use of (2.2), (3.2), Young’s inequality, (3.6), and (3.7) gives

I5 = C1

∫ T

0

εψ(E(t))

∫
Γ1

c(τ)f2(zt)dΓdt

≤ C2

∫ T

0

εc(τ)ψ(E(t))

∫
F2

f(zt)ztdΓdt

+ C2

∫ T

0

εc(τ)ψ(E(t))

∫
F1

f2(zt)dΓdt
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1312 YUAN GAO, JIN LIANG, AND TI-JUN XIAO

≤C2

∫ T

0

−εc(τ)ψ(E(t))E′(t)dt+ C2

∫ T

0

∫
F1

εφ(c(τ)f2(zt))dΓdt

+ C2

∫ T

0

εφ?(ψ(E(t)))dt

≤C2

∫ T

0

∫
F1

ε
√
c(τ) |f(zt)|h1(

√
c(τ) |f(zt)|)dΓdt

+ C2

∫ T

0

−εc(τ)ψ(E(t))E′(t)dt+ C2

∫ T

0

εφ?(ψ(E(t)))dt

≤C2

∫ T

0

∫
F1

ε
√
c(τ) |f(zt)|h1(C

√
c(τ))h1(C−1 |f(zt)|)dΓdt

+ C2

∫ T

0

−εc(τ)ψ(E(t))E′(t)dt+ C2

∫ T

0

εφ?(ψ(E(t)))dt.

Observe ∫
F1

|f(zt)|h1(C−1 |f(zt)|)dΓ ≤
∫
F1

|f(zt)|h1(h−1
1 (|zt|))dΓ

=

∫
F1

f(zt)ztdΓ ≤ −E′(t)

by (3.4) and (3.2). Accordingly,

I5 ≤C2

∫ T

0

−εc(τ)ψ(E(0))E′(t)dt+ C2

∫ T

0

−ε
√
c(τ)h1(C

√
c(τ))E′(t)dt

+ C2

∫ T

0

εφ?(ψ(E(t)))dt.

Combining this and (3.11)–(3.15) together, we obtain

(3.16)

∫ T

0

V ′(t)dt ≤
∫ T

0

{
C ′2εφ

?(ψ(E(t)))− ε

4
ψ(E(t))E(t)

}
dt

+

∫ T

0

{
1− C ′2ε

[
1 + c(τ) +

√
c(τ)h1

(
C
√
c(τ)

)]}
E′(t)dt.

Step 4. Taking a suitable ε, we will drop the controlling term in row 2 of (3.16),
and show that V (t) is equivalent to the energy E(t).

Observe, by Young’s inequality, (3.12), (3.7), (3.5), and (3.8),

εψ(E(t))

∫
Γ12

z2dx ≤ C ′2εφ?(ψ(E(t))) + C ′2ε

∫
Γ12

φ

((z
2

)2
)
dΓ

≤ C ′2ε[φ′(aE(t))aE(t)− φ(aE(t))] + C ′2ε

∫
Γ12

G(z)dΓ

≤ C ′2εφ′(aE(0))aE(t) + C ′2ε

∫
Γ1

G(z)dΓ

≤ C ′2εE(t),

where Γ12 := {x ∈ Γ1; |z| ≤ 2}. From this and (3.9), we have
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A NEW METHOD TO OBTAIN UNIFORM DECAY RATES 1313

εψ(E(t))

∣∣∣∣∫
Ω

uutdx+

∫
Γ1

zztdΓ +

∫
Γ1

zudΓ

∣∣∣∣ ≤ C ′2εE(t).

Let
ε = ε(E(T ))

with

ε(s) :=
1

2C ′2

[
1 + c(τ(s)) +

√
c(τ(s))h1

(
C
√
c(τ(s))

)]−1

, s > 0

(an increasing function). Then

εψ(E(t))

∣∣∣∣∫
Ω

uutdx+

∫
Γ1

zztdΓ +

∫
Γ1

zudΓ

∣∣∣∣ ≤ 1

2
E(t),

so that

(3.17)
1

2
E(t) ≤ V (t) ≤ 3

2
E(t).

Also, it follows from (3.16) that

(3.18)

∫ T

0

V ′(t)dt ≤
∫ T

0

{
C ′2εφ

?(ψ(E(t)))− ε

4
ψ(E(t))E(t)

}
dt.

Step 5. From (3.18), we will derive a discrete inequality for V (t) which enables
us to obtain the energy decay rate by means of [13, Lemma 3.3].

Take a > 0 small enough such that aC ′2 ≤ 1
4 , and notice

φ?(ψ(E(t))) = φ′(aE(t))aE(t)− φ(aE(t)).

Then (3.18) becomes∫ T

0

V ′(t)dt ≤ ε
∫ T

0

(
C ′2a−

1

4

)
φ′(aE(t))E(t)− C ′2φ(aE(t))dt

≤
∫ T

0

−εC ′2φ(aE(t))dt.

From this and (3.17), we get

C ′2ε

(
2

3
V (T )

)
φ

(
2a

3
V (T )

)
T ≤ V (0)− V (T ).

As in [13], we fix T = T0 and define

p(x) = C ′2ε

(
2

3
x

)
φ

(
2a

3
x

)
T0,

and it is easy to see that p(x) is a positive, increasing function with p(0) = 0.
Also, the same arguments apply to the time interval [mT0, (m + 1)T0] for any

positive integer m. Thus, we have

V (mT0 + T0) + p(V (mT0 + T0)) ≤ V (mT0), m = 0, 1, . . .

Using Lemma 3.3 in [13], we get

V (t) ≤ S
(
t

T0
− 1

)
, t > T0,
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1314 YUAN GAO, JIN LIANG, AND TI-JUN XIAO

where S(t) is the solution of

d

dt
S(t) + q(S(t)) = 0, S(0) = V (0),

with q(s) := s − (I + p)−1(s). Therefore, by (3.17), we obtain E(t) ≤ 2V (t), which
ends the proof.

Remark 3.3.
(1). In the above proof, we used a Lyapunov function V (t), which is equivalent to

the energy E(t) and somewhat similar to the one in [15], but estimating V (t)
here turns out to be much more difficult. Indeed, the inner damping is only
local (in contrast to that in [15]), and it takes time to control the whole energy
of the system, so an estimate with time integral is definitely involved (see
Lemma 3.2). Thus, we are unable to derive a nonlinear differential relation
for V (t) (as in [15, (2.9)]). We ended up obtaining the decay rate of V (t) from
a discrete inequality for V (t) with the help of a lemma in [13]. In our case,
another new difficulty is caused by the lack of compactness in the dynamics
on the boundary; this means that a compactness-uniqueness type of argument
would fail (as explained in section 1). We then adopted the convex function
φ (also used in [15] to control the inner damping term) to subtly control the
boundary term g(z) as well as the boundary damping term f(zt).

(2). We would like to say that the local inner damping is important for the proof
of Theorem 3.1. One of the key points is how to control the boundary term∫

Γ1
u2
tdΓ (see the proof of Lemma 3.2). Due to the existence of term ztt, one

cannot obtain the estimate for
∫

Γ1
u2
tdΓ only from the boundary damping

f(zt). In fact, without the inner damping, the energy would not decay in a
uniform way (as indicated in [6]).

Example 3.4. Let Assumptions (A1) and (A2) hold. Suppose that there are α ≥
β ≥ 1 and C, c > 0 such that for |s| ≤ 1,

C|s| 1α ≥ |f(s)| ≥ c|s|α, |g(s)| ≥ c|s|β .

Then we have

(3.19) E(t) ≤


C0e

−c0t, if α = 1,

C0(t+ 1)−
1
3 , if 1 < α < 3,

C0(t+ 1)
− 4

(α+1)2−4 , if α ≥ 3,

where C0, c0 are positive constants depending on E(0).
Indeed, take

h1(s) = csα, h2(s) = csβ ,

φ(s) = cs
α+1
2 if α = 1 or α ≥ 3, φ(s) = cs2 if 1 < α < 3.

It follows that for s small,

ε(s) ∼ c1s
α2−1

4 , p(s) ∼ c2s
(α+1)2

4 , q(s) ∼ c3s
(α+1)2

4 , if α = 1, or α ≥ 3,

ε(s) ∼ c1s2, p(s) ∼ c2s4, q(s) ∼ c3s4, if 1 < α < 3

(c1, c2, and c3 are positive constants depending on E(0)). This leads to the estimate
(3.19) in view of Theorem 3.1
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Now it remains to prove Lemma 3.2.
Proof of Lemma 3.2. We use the cutoff technique (cf. [16]) to overcome the

problem caused by the term ut on Γ.
Step 1. Write

Γb =
⋃
x∈Γ

{y ∈ Rn; |y − x| < b},

with b > 0 a small constant. We then construct a cutoff function ϕ(x) ∈ C∞0 (Rn)
satisfying

0 ≤ ϕ(x) ≤ 1,

ϕ(x) = 1, x ∈ (Rn \Q1) ∩ Ω , Ω \Q1,

ϕ(x) = 0, x ∈ Q0 ∪ (Rn \ Ω);

here Q0, Q1 are two open domains with

Γb ⊂ Q0 ⊂ Q1 ⊂ Rn \ (Ω \ Ωη)

and
Q0 ∩ (Ω \Q1) = ∅, Q1 ∩ (Ω \ Ωη) = ∅.

Multiplying (1.1) by ϕx · ∇uψ(E) and integrating in time and space, we deduce

∫ T

0

ψ(E)

∫
Ω\Q1

n

2
u2
t +

(
1− n

2

)
|∇u|2dxdt

(3.20)

≤
∫ T

0

ψ(E)

∫
Γ

ϕx · ∇u∂u
∂ν

+
ϕx · ν

2
(u2
t − |∇u|2)dΓdt

−
∫

Ω

ϕx · ∇uutψ(E)|T0 dx+

∫ T

0

∫
Ω

ψ′(E)E′ϕx · ∇uutdxdt

+

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt+ C3

∫ T

0

ψ(E)

∫
Ω∩Q1

u2
t + |∇u|2dxdt

≤ C3ψ(E(0))E(0)− C3

∫ T

0

ψ′(E)E′Edt

+

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt+ C3

∫ T

0

ψ(E)

∫
Ω∩Q1

u2
t + |∇u|2dxdt

≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Ω∩Q1

|∇u|2dxdt

+

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt

for any τ1 > 0 (c̃(τ1) is a positive constant depending on τ1). Here, we used the
equalities∫

Ω

ϕx · ∇uuttdx

=
d

dt

∫
Ω

ϕx · ∇uutdx−
1

2

∫
Γ

ϕx · ν|ut|2dΓ +
1

2

∫
Ω

div(ϕx)|ut|2dx,
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1316 YUAN GAO, JIN LIANG, AND TI-JUN XIAO∫
Ω

ϕx · ∇u4udx

=

∫
Γ

ϕx · ∇udu
dν
dΓ− 1

2

∫
Γ

ϕx · ν|∇u|2dΓ

+
1

2

∫
Ω

div(ϕx)|∇u|2dx−
∫

Ω

∑
j, k

∂(φxk)

∂xj

∂u

∂xk

∂u

∂xj
dx;

moreover, we used the Cauchy–Schwar inequality, the increasing property of ψ(s), the
decreasing property of E(s), and the estimate

(3.21) −
∫ T

0

ψ′(E)E′Edt = −
∫ T

0

Edψ(E) ≤ E(0)ψ(E(0)).

On the other hand, multiplying (1.1) by ψ(E)u and integrating in time and space,
we also have∣∣∣∣∣

∫ T

0

ψ(E)

∫
Ω

u2
t − |∇u|2dxdt

∣∣∣∣∣ ≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt.(3.22)

Next, we try to obtain an estimate in terms of |∇u|. Combining (3.20) and (3.22), we
have

∫ T

0

ψ(E)

∫
Ω\Q1

|∇u|2dxdt

(3.23)

=

∫ T

0

ψ(E)

∫
Ω\Q1

n

2
u2
t +

(
1− n

2

)
|∇u|2 − n

2
(u2
t − |∇u|2)dxdt

≤
∫ T

0

ψ(E)

∫
Ω\Q1

n

2
u2
t +

(
1− n

2

)
|∇u|2dxdt+

n

2

∣∣∣∣∣
∫ T

0

ψ(E)

∫
Ω\Q1

(u2
t − |∇u|2)dxdt

∣∣∣∣∣
≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+ C3

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt+ C3

∫ T

0

ψ(E)

∫
Ω∩Q1

|∇u|2dxdt.

From now on, the general constant C3 also depends on n. Multiplying (n − 1) by
(3.23), together with (3.20), leads to∫ T

0

ψ(E)

∫
Ω\Q1

u2
t + |∇u|2dxdt

≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+ C3

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt+ C3

∫ T

0

ψ(E)

∫
Ω∩Q1

|∇u|2dxdt.

This, together with (3.20), implies
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∫ T

0

ψ(E)

∫
Ω

u2
t + |∇u|2dxdt

(3.24)

=

∫ T

0

ψ(E)
(∫

Ω\Q1

+

∫
Ω∩Q1

)
u2
t + |∇u|2dxdt

≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+ C3

∫ T

0

ψ(E)

∫
Ω

τ1|∇u|2 + c̃(τ1)wu2
tdxdt+ C3

∫ T

0

ψ(E)

∫
Ω∩Q1

|∇u|2dxdt.

Step 2. In order to deal with
∫ T

0
ψ(E)

∫
Ω∩Q1

|∇u|2dxdt, we define a cutoff function

ξ(x) ∈ C∞0 (Rn) that satisfies

0 ≤ ξ(x) ≤ 1,

ξ(x) = 1, x ∈ Q1,

ξ(x) = 0, x ∈ Ω \Q2.

Here Q2 is an open domain with

Q1 ⊂ Q2 ⊂ Rn \ (Ω \ Ωη)

and
Q1 ∩ (Ω \Q2) = ∅, Q2 ∩ (Ω \ Ωη) = ∅.

Multiplying (1.1) by ξuψ(E) and integrating in time and space, we then obtain

0 =

∫
Ω

ξuutψ(E)|T0 dx−
∫ T

0

ψ(E)

∫
Ω

ξu2
tdxdt−

∫ T

0

ψ(E)

∫
Γ1

ξuztdΓdt

+

∫ T

0

ψ(E)

∫
Ω

ξwuutdxdt−
∫ T

0

∫
Ω

ψ′(E)E′ξuutdxdt

+

∫ T

0

ψ(E)

∫
Γ

u2

2
ν · ∇ξdxdt−

∫ T

0

ψ(E)

∫
Ω

u2

2
∆ξdxdt

+

∫ T

0

ψ(E)

∫
Ω

ξ|∇u|2dxdt.

Due to the construction of ξ, we have

(3.25)

∫ T

0

ψ(E)

∫
Ω∩Q1

|∇u|2dxdt

≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+ C3

∫ T

0

ψ(E)

∫
Ω

τ2|∇u|2 + c̃(τ2)wu2
tdxdt+ C3

∫ T

0

ψ(E)

∫
Ω∩Q2

u2dxdt

for any τ2 > 0; here, we used the Cauchy–Schwarz inequality, (2.1), and (3.21).

Step 3. To estimate
∫ T

0
ψ(E)

∫
Ω∩Q2

u2dxdt, we construct another cutoff function

β(x) ∈ C∞0 (Rn) satisfying
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0 ≤ β(x) ≤ 1,

β(x) = 1, x ∈ Q2,

β(x) = 0, x ∈ Ω \ Ωη.

Let v(x) be the solution of the following elliptic problem:

∆v = β(x)u, x ∈ Ω,

v = 0, x ∈ Γ0,

∂v

∂ν
= 0, x ∈ Γ1.(3.26)

We multiply (3.26) by v(x) to deduce that∫
Ω

|∇v|2dx = −
∫

Ω

βuvdx ≤ C3

(∫
Ω

βu2dx

) 1
2
(∫

Ω

v2dx

) 1
2

.

Thus, using Poincare’s inequality gives

(3.27)

∫
Ω

v2dx ≤ C3

∫
Ω

βu2dx.

Similarly, we have

(3.28)

∫
Ω

v2
t dx ≤ C3

∫
Ω

βu2
tdx.

Next, multiplying (1.1) by ψ(E)v and integrating in time and space yields

0 =

∫
Ω

vutψ(E)|T0 dx−
∫ T

0

ψ(E)

∫
Ω

vtutdxdt−
∫ T

0

ψ(E)

∫
Γ1

vztdΓdt

+

∫ T

0

ψ(E)

∫
Ω

wvutdxdt−
∫ T

0

∫
Ω

ψ′(E)E′vutdxdt−
∫ T

0

ψ(E)

∫
Ω

u∆vdxdt.

Thus, employing Young’s inequality, (3.27), (3.28), and (3.21), we obtain

(3.29)

∫ T

0

ψ(E)

∫
Ω∩Q2

u2dxdt

≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+ C3

∫ T

0

ψ(E)

∫
Ω

τ3u
2
t + c̃(τ3)wu2

tdxdt

for any τ3 > 0. Now, combining the above estimates (3.24), (3.25), and (3.29) and
choosing τ1, τ2, τ3 small enough, we see

(3.30)

∫ T

0

ψ(E)

∫
Ω

|∇u|2 + u2
tdxdt ≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Γ1

z2
t dΓdt

+ C3

∫ T

0

ψ(E)

∫
Ω

wu2
tdxdt.
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Step 4. It remains to estimate ψ(E(0))E(0). By adding
∫ T

0
ψ(E)

∫
Γ1

(z2
t+G(z))dΓdt

to (3.30), we get∫ T

0

ψ(E)Edt ≤ C3ψ(E(0))E(0) + C3

∫ T

0

ψ(E)

∫
Ω

wu2
tdxdt

+ C3

∫ T

0

ψ(E)

∫
Γ1

z2
t +G(z)dΓdt.(3.31)

Notice from (3.2) that

ψ(E(t))E(t) = ψ(E(0))E(0) +

∫ t

0

ψ′(E)E′Edτ

−
∫ t

0

ψ(E)

(∫
Ω

wu2
tdx+

∫
Γ1

ztf(zt)dΓ

)
dτ

and
ψ′(E(t))) = φ′′(aE(t))a.

Combining this with (3.31), we obtain

ψ(E(0))E(0) ≤ rT sup{φ′′(s); s ∈ (0, r]}
T − C3

∫ T

0

−E′dt

+
T

T − C3

∫ T

0

ψ(E)

(∫
Ω

wu2
tdx+

∫
Γ1

ztf(zt)dΓ

)
dt

+
C3

T − C3

∫ T

0

ψ(E)

(∫
Γ1

z2
t +G(z)dΓ +

∫
Ω

wu2
tdx

)
dt

for T > C3, This and (3.30) together yield∫ T

0

ψ(E)

∫
Ω

u2
tdxdt

≤ C2
3

T − C3

∫ T

0

ψ(E)

∫
Γ1

G(z)dΓdt+
C3rT sup{φ′′(s); s ∈ (0, r]}

T − C3

∫ T

0

−E′dt

+

∫ T

0

ψ(E)

[(
C2

3

T − C3
+

C3T

T − C3

)∫
Ω

wu2
tdx+

C3T

T − C3

∫
Γ1

f2(zt)dΓ

+

(
C3 +

C3T

T − C3

)∫
Γ1

z2
t dΓ

]
dt.

Taking
T1 = 2C3, C ′ = 2C2

3 + 3C3 + 2C3r sup{φ′′(s); s ∈ (0, r]},
we then obtain the estimate (3.10).
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