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Abstract. This paper discusses the control of coherent structures in turbulent flows, which has broad appli-
cations among complex systems in science and technology. Mean field games have been proved a
powerful tool and are proposed here to control the stochastic Lagrangian particles as players tracking
the flow and tracer fields. We derive optimal control solutions for general nonlinear fluid systems
using mean-field game models and develop computational algorithms to efficiently solve the resulting
coupled forward and backward mean-field system. A precise link is established for the control of pas-
sive tracer density and the scalar vorticity field based on the functional Hamilton—Jacobi equations
derived from the mean field models. A new iterative numerical strategy is then constructed to com-
pute the optimal solution with fast convergence. We verify the skill of the mean-field control models
and illustrate their practical efficiency on a prototype model modified from the viscous Burgers
equation under various cost functions in both deterministic and stochastic formulations. The good
model performance implies potential effectiveness of the strategy for more general high-dimensional
turbulent systems.
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1. Introduction and background. Control of complex fluid systems characterized by a
wide multiscale spectrum and nonlinear coupling between different scales remains a grand chal-
lenge with crucial applications among many fields of science and engineering [6, 32, 26, 4, 16].
Flow fields undergoing turbulent motions often demonstrate large-scale coherent structures,
and control of the important transporting behaviors requires dealing with the coherent struc-
tures demonstrating strong nonlinear interactions among multiple scales [35, 27, 13]. In ad-
dition, the Eulerian flow field can be captured by Lagrangian particles advected by the flow
velocity. Control of key macroscopic structures in multiscale flows can be achieved through
acting on the Lagrangian particles immersed in the fluid field [34, 21]. Typical examples can
be found in elasticity modeling [22, 16] and fusion plasmas [14, 15], where the macroscopic
fluid features can be effectively determined by controlling an electric field acting on the group
motion of the microscopic polymers or charged particles. New precise theoretical analysis
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and effective control strategies are still needed considering the nonlinear dynamics and high
computational demand.

In recent years, mean-field game (MFG) theory was proposed independently by Lasry
and Lions [28] and Huang, Malhamé, and Caines [24] to study a large game system with
identical players using the dynamics of their population/distribution. The indistinguishable
individual player takes strategy/control based on the population states (without observing
all the strategies of other players); meanwhile the distribution of individuals yields the pop-
ulation dynamics. The equilibrium, also known as the Nash system, is solved by a coupled
MFG system consisting of a forward Fokker—Planck equation (describing the evolution of the
density /population of the individuals) and a backward Hamilton-Jacobi equation (HJE; de-
scribing the control /strategy of each indistinguished player); cf. [3]. Due to this simplification
for large game systems, MFG has been proved to be a powerful tool to study the equilibrium
behavior of infinitely many weakly interacting players [7, 12]. The associated mean-field con-
trol problem also stimulates many applications in swarm drones, generative models, transition
path theory, and mathematical finance [10, 30, 19, 42].

In this paper, we propose to address the challenging problem of controlling nonlinear
transport of coherent structures by developing models of MFGs. Two MFG models are intro-
duced concerning the control of passive tracers and active Lagrangian particles under a unified
formulation: First, we introduce an MFG model (3.1) for the control of passive scalar tracers;
Second, we design a control model (3.4) for representative flow structures in the advection
and diffusion of a scalar vorticity field. In the first tracer control model, the stochastic motion
of the passive Lagrangian tracers is immersed in a prescribed fluid flow field and passively
advected by the flow velocity. Thus, the tracers can be viewed as the large number of identical
players in the MFGs. The dynamical behavior of the tracer density and the optimal control
on each of the identical Lagrangian tracers can be solved by the corresponding MFG system
with uncoupled forward and backward equations. In contrast to the passive tracers, in the
flow control model, active Lagrangian particles are used as players to track the fluid vorticity
field. Thus, the controlled particles become nonlocally coupled by their accumulated density
function. The evolution continuum density of the particles is shown to coincide with the
vorticity equation recovered by the McKean—Vlasov equation [37]. Therefore, the control of
flow solutions can be inversely achieved by acting on the large number of Lagrangian particles
(players). An MFG system of closely coupled forward and backward equations is derived for
the optimal solution of the flow control problem. In addition, the corresponding functional
HJEs are derived describing the evolution of the value function in both the tracer and flow
control models. This leads to an interesting connection between the uncoupled tracer MFG
system and the coupled vorticity MFG system in a unified way.

The nonlinear nature of the vorticity equation makes the corresponding Hamiltonian non-
separable and thus new decouple procedures are needed. A series of numerical strategies have
been developed for solving the coupled MFG equations [2, 29]. Methods based on a fixed-
point iteration [9, 23] have been used to decouple the forward and backward equations with
semi-Lagrangian schemes and the Cole-Hopf transformation to convert to linear equations.
One strategy, called fictitious play [8, 25], is shown to help the convergence of the fixed-point
iteration using the average of the entire history of the outputs. Another approach uses the
primal-dual hybrid gradient method [11, 31] to solve the control problem as a saddle point
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problem. Usually, these methods require transformation of the original equations in the first
step and may require a large number of iterations in numerical simulations.

Based on the typical structure of the nonlinear flow model, we propose a new strategy
to efficiently find the optimal solution of the coupled MFG system without any special treat-
ment to the original equations. The numerical method is based on the link developed for
the uncoupled tracer MFG system and the coupled flow MFG equations, where the optimal
solution for the coupled equations becomes a fixed point of the solution map for the uncoupled
problem. This inspires an effective iterative approach by first solving the backward equation
given the output solution from the previous step, then using the optimal control function to
solve the density function from the forward equation. Stability and fast convergence of the
proposed iterative scheme are further guaranteed by a self-adapted interpolation step during
each iteration. We show the necessity of adopting this essential interpolation step to effec-
tively reduce the cost function value in each iteration cycle. This step also is shown to enable
fast convergence during the iterating updates. The model performance and the effectiveness
of the proposed numerical algorithm are tested on a representative prototype model adapted
from the viscous Burgers equation simulating the vortical advection by an incompressible flow
field. Using the proposed iterative approach, fast convergence is observed within a few steps
with efficient computation in each updating step. Performance of ensemble approximations
adaptive to higher-dimensional cases are also considered.

The paper is organized as follows. A description of the tracer and flow transport equations
in both deterministic and stochastic formulation is introduced in section 2. Mean field models
as well as the associated systems for the control problems are constructed in section 3. The
mean-field models can be written in Hamilton dynamics and a link between the tracer and
flow control models is built in section 4. Effective computational schemes corresponding to the
theoretical models are then proposed in section 5 with numerical confirmation on prototype
models in section 6. We conclude the paper with a summarizing discussion in section 7.

2. Formulation of the fluid control equations. We start with the basic setups and nota-
tion for the flow system and the associated control problem. In particular, the Eulerian flow
system has an equivalent stochastic Lagrangian formulation based on which the MFGs will
be developed.

2.1. Governing equation as the transport of the vorticity field. Let u(z,t) be the in-
compressible velocity field of a fluid as a function on the Eulerian spatial coordinates z € T¢
and time ¢. The fluid field can be modeled by the evolution of a scalar vorticity field q(x,t)
according to the standard advection-diffusion equation

@) W Vg=D@A)gt ), u(e)=Ta(0), a0)=p0).

On the right-hand side of the equation, the flow is subject to an external forcing effect rep-
resented by f(z,t) and generalized damping and dissipation effects D(A). The velocity field
satisfies V - u = 0 due to incompressibility. Therefore, the vorticity field g(x,t) is uniquely
linked to the velocity field by the (invertible) linear operator, u = T ¢, so that the flow solu-
tion is fully represented by the scalar vorticity transported by the flow velocity. The scalar
model can serve as a desirable general framework for developing theories and practical meth-

ods for turbulent transport and control of coherent structures [33, 38]. Applications of the
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general fluid advection-diffusion model (2.1) include wide classes of turbulent flows in realistic
natural and engineering systems such as the passive tracer diffusion [34], turbulent transport
in geophysical turbulence [38, 39], and anomalous transport in fusion plasmas [15, 41].

It is noticed that the above equation (2.1) usually permits a set of metastable steady state
solutions [40]. The steady states provide a natural characterization of the coherent structures
observed in the flow field, while multiscale turbulent features are usually developed in the
solution of the vorticity flow (2.1). We will design two mean-field control models based on
the complex fluid structures generated in the vorticity equation (2.1). First, in the control of
the passive tracer field, the solution of (2.1) provides the (known) background advection flow
that transports the passive tracers. Second, in considering the control of the flow field, we
design the additional “control forcing” that transforms the key coherent structures in the flow
field. Our attention will be given to finding the optimal transition undergoing some transient
motions from one initial state to another final steady state by imposing a proper external
forcing effect in either the tracer density or the flow vorticity field.

Remark 2.1. One motivating example of (2.1) comes from the two-dimensional turbulence,
where the potential vorticity ¢ = Z(v) is associated with the flow stream function ¢ via a
linear operator Z and may include a variety of physical effects (for example, Z(1)) = A).
Then the corresponding velocity field can be determined by the stream function as u = V+) =
(—0y1), 0x4) through a linear operator.

2.2. Stochastic Lagrangian equations for particle transport. From a stochastic per-
spective, the continuity equation of the flow field (2.1) can be captured by the collective
performance of a group of Lagrangian particles X, transported by the flow velocity field. In
addition, we introduce a control field a5 as the additional driving force exerted on the flow
or tracer field. In the mean-field game context, those particles are also called indistinguished
individual players.

We introduce the fluid state (i.e., the population/vorticity) from the solution of the vor-
ticity equation (2.1) as ¢s(+),t < s <T. The velocity field is then denoted as us(z;qs) = T qs(2)
explicitly indicating the direct relation with ¢s. Suppose for now that the control field ag(x; gs)
is given dependent on the fluid motion, which will be determined by an optimization proce-
dure as described next in section 3. Then the trajectory of each of the particles is described
by the stochastic differential equation (SDE)

(2.2) dXs = [us (Xs;0s5) + as (Xs;05)]ds + V2DAW,, t<s<T, X;~pi(x).

Here wus(-;¢s), as(-;¢s) indicate the possible dependence on the fluid field {gs}i<s<7 for the
transport velocity and the control. The molecular diffusion effect is represented by Gaussian
white noise with a diffusivity coefficient D. First in the tracer control problem, we seek to
describe the probability measure, describing the law of individuals X ~ ps(x). With the given
flow velocity ug, the governing equation will satisfy the Kolmogorov forward equation for the
SDE (2.2),

(2.3) Osps (x) + V- [(us (3qs) + s (73¢5)) ps ()] = DAps (x), t<s<T,

with the initial condition from the initial tracer configuration in the fluid field, X; ~ p; ().
Notice that given a fluid vorticity state g5, the law of individuals ps does not necessary coincide
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with ¢s (that is, the controlled tracer density field may not exactly track the evolution of the
vorticity flow).

Next, treating the fluid vorticity ¢s as an unknown state to be optimized, we control the
vorticity equation (2.1) by introducing an external forcing in the form

(2.4) f(x,8) ==V "|os () gs (2)],

according to the same control effect as in the SDE formulation (2.2). The special form of
control forcing in (2.4) acts as an additional action in the form of a transport term to move
the flow particles to the target configuration. The resulting flow equation becomes

(2'5) as‘]s (I)—}—V [(us (x;QS)“’as (x;QS))qS (m)] :DAQS ($)a t<s<T,

exploiting the divergence-free velocity field, V - us = 0. Notice that the vorticity field gs is not
passively advected by the fluid field and actually determines the velocity field us. Nevertheless,
in the control problems discussed next, we can view the field g5 as a proper measure on the
state space since it is solved by the continuity equation (2.3) up to a constant normalization
constant. In particular, if we set the initial condition ¢; = p; in (2.2), the flow vorticity field
qs will take the same form as the tracer density measure generated by the stochastic samples
advected by the velocity field us(x;¢qs). The equivalence between the controlled flow equation
(2.5) and the SDE for an ensemble of particles implies the possibility to control the key flow
structures by acting on the measurements of Lagrangian particles.

3. Control of the fluid fields with mean-field games. Here, we propose the control
models for the transport of both the tracer density and the fluid vorticity fields. We first
formulate the problems based on the PDEs. Then, the corresponding stochastic control for
the Lagrangian particles can be formulated in an equivalent way.

3.1. Control of the tracer density field with a given fluid solution. First, we propose a
mean-field game model (MFG-1) concerning a mean-field game for indistinguished individuals
with a given fluid dynamics. Given the flow vorticity solution ¢s(x),t < s < T, consider the
optimal control problem about the value function on the optimal solutions p(+) := ps(x), a(:) :=
as(z),s € [t,T],z €TY,

s Y (pt):= inf | (/G(w, qr)pr (z)dz + /tT {/[L (as) + F (2, q5)]ps (z) dx} ds) ,

s.t. Osps + V- [(Tqs + as)ps] =DAps, t<s<T, andp;(z)=p(zx),

where we denote the terms to be optimized under inf as J(p(-),«(-)). Here, the running cost
L(a) depends on the individual control action; the individual running cost F(x,q) represents
the running cost interacting with the fluid field; and the terminal cost G(z,q) depends on
the final flow state. The dependence on the fluid field can be either global or local, and we
will describe the specific forms of these functionals in section 5.1. Here, the solution ps of
the continuity equation in (3.1) can be viewed as the density field of the controlled tracers
(2.2), driven by the velocity field us generated from the given flow vorticity solution gs;. We
will refer to the optimization problem (3.1) as the MFG-1 model. The solution of the MFG-1

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 10/03/25 to 104.28.104.206 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1686 YUAN GAO AND DI QI

model describes the optimal control of the tracer density from the initial configuration p to
the final target pr.

The optimal solution of the MFG-1 model given a fixed flow vorticity solution ¢4 is de-
scribed by the following proposition for the corresponding Euler—Lagrange equations.

Proposition 3.1. Given the flow vorticity field qs(x),s € [t,T], the optimal tracer density
ps(z) under the cost function (3.1) with L(c) = $|a|? is given by the solution of the following
MFG-1 system:

(3-23) Osps +V - [(qu + V(bs) ps] =DAps, t<s<T, p (:C) =p (x) >
1
(320)  Dubut 5|V6uP + Vou Tau+ DAG, = Flaqr), 1 <5< T, o (2) = ~Cla,ar).

The corresponding optimal control can be solved by cs(x) = Vs(x).

Thus, we have a decoupled MFG system (3.2) for the MFG-1 model. The proof of
Proposition 3.1 can be found in the supplementary materials (supplement_mfg.pdf [local /web
1.78MBY).

3.2. Control of the vorticity flow field as a potential mean-field game. Next, we design
the control of the vorticity flow stated in (2.1) as an MFG system. In particular, we are
seeking the control forcing in the specific form as (2.4), where a; is the additional control
vector that aims to drive the initial flow state to the final target. Combining with the original
vorticity equation (2.1), we find the control PDE associated with the control forcing as

(3.3) 0sqs +V - [(Tqs + as) qs) = DAgs, t<s<T,

with the prescribed initial state ¢ |s=¢= ¢(x). The equation describes the control of the
vorticity flow field g5 from the initial state ¢ at s =t to a final target field gp at s =T through
the control ay. Notice that this flow control equation is different from the tracer control
equation (2.3) because the controlled vorticity is to be optimized with the nonlinear coupling,
in contrast to the prescribed velocity field in (2.3). Even though it may seem impractical
to control the entire flow field, the control equation (3.3) provides mathematical guidance
for designing effective forcing a, acting on colloids of particles in complex fluids such as the
control of surfactant chemicals [22], charged particles [14], and ionic soft matter [16].

Here, we propose the potential mean-field game model (MFG-2) concerning the control of
the fluid vorticity field. Instead of controlling the tracer density field ps advected by the flow
field, we consider the direct optimal control of the flow vorticity state, that is,

oy V= it <g (ar) + /t ' [ / L(ay) g5 () da + F (qs)} ds),

s.t. 0sqs +V - [(Tqs + as)qgs) = DAgs, t<s<T, andq(z)=q(zx),

where we denote the terms under inf as Z(q(-), «(+)). We will refer to the optimization problem
(3.4) as the MFG-2 model. In the above potential game model, we assume that the running
cost F and the terminal cost G satisfy F(x,q) = %(q, x), G(x,q) = %—g(q, x), as a connection to
the MFG-1 model (3.1). In contrast to the MFG-1 model (3.1), the flow vorticity ¢s becomes
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the controlled state in the MFG-2 model rather than the tracer density ps. This leads to the
nonlinear continuity equation in (3.4).

Still, we can solve the optimization problem by deriving the Euler-Lagrangian equations.
The following proposition provides the Euler—-Lagrangian equations for the optimal solution
of the MFG-2 model.

Proposition 3.2. The optimally controlled flow solution in MFG-2 model (3.4) with L(a) =
%\042 is given by qs and the associated optimal control for the flow field is given by o = Vs,
where (qs,¢s),s € [t,T] solves the following MFG-2 system:

(3.5a) 9sqs +V - [(Tqs + Vs) gs] = DAgs, t<s<T,
at (z) =q(z),
(350)  0upat 5 IV + Vo Tao 4+ T (Viouss) + DApy = Fla,0), t<5<T,
or () = —G(x,qr).

The proof of Proposition 3.2 can be found in the supplementary materials (supplement_
mfg.pdf [local/web 1.78MB]).

3.3. SDE formulations for the mean-field game models. From a different perspective,
we can reformulate the above PDE models for controlling tracer density and fluid vorticity
as SDEs representing particles in Lagrangian form. The SDE formulation can also help to
propose effective computational strategies based on simulation of the stochastic samples.

First, the continuity equation in the MFG-1 model (3.1) can be viewed as the density equa-
tion of the motion of the stochastic particles (2.2). Therefore, we can formulate the following
stochastic optimal control problem (referred to as the MFG-1’" model) for the corresponding
stochastic control problem with the given flow solution gs(z),t <s<T:

T
upt) = it B{GOran) + [ L0 (0) + F (Xa0lds).
(3.6) p().a() '

s.t. dXs=[Tqs (Xs) + as (Xs)]ds + V2DdW,, t<s<T, and X;~p(x).
The optimal solution of the MFG-1’ model can still be solved by the Euler-Lagrangian equa-

tions using the equivalent representation (3.2) in the Eulerian problem, so that we have the
following corollary.

Corollary 3.3. With the flow vorticity field qs,s € [t,T] given, the solution (ps,ps) of the
MFG-1 system (3.2) provides the optimal solution of the stochastic MFG-1" model (3.6).

Then, the control forcing (2.4) can be viewed as the additional drifting effect a5 that is
externally exerted on the local particles, which in an optimal way is given by as; = Vps. We
can introduce the McKean—Vlasov equation

dX, = [us (X Ps) + as (X Ps)] ds + \/EdWs.

The tracer density as the law of the above stochastic particle X ~ ps is solved by the continuity
equation in the form

Osps + V- [(us + as) ps] = DAps.
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Let g5 be a solution of the controlled flow vorticity equation (3.3). With the same form of as
and ugs =T ¢, we have ps; = ¢s due to the uniqueness for linear equations.

Similarly, according to the MFG-2 model (3.4), we give the following stochastic control
problem as the expectation with respect to ¢s (referred to as the MFG-2' model):

. = T d
or V@t it B{60an ¢ [k (X)) + F (Xaiis)

s.t. dXs=[Tqs (Xs) + as (Xs)|ds+vV2DdW,, t<s<T, and X;~q(z).

Above, ¢ is acting as the law of the random particles X in the nonlinear field. In contrast
to the density control problem in (3.6) with a given velocity field, g5 will also be optimized
together with the control. The initial sample is drawn from the initial flow state X; ~ gq.
Still, we assume the MFG-2 model (3.4) is a potential game with the cost functionals F,G
satisfying

.F(q):/F(x,q)q(x)d:c, Q(Q)Z/é(x,q)q(a:)dx.

Notice that the new costs F, G may not necessarily be the same as the F, G in (3.6). In a similar
way, the solution of the MFG-2’ model is given by the same Euler-Lagrangian equations in
(3.5).

Corollary 3.4. With the same initial law q = p, the solution (ps,ps) of MFG-2 system (3.5)
provides an optimal solution of the stochastic MFG-2" model (3.7).

Mean field game with finite number of players. The empirical distribution of a group
of N particles is supposed to recover the global vorticity field

N
39 o (@)= + 3 bx: () 2. (),
i=1

as N — oo. If the control velocity field a for SDE (2.2) and for (3.3) coincide, the continuity
PDE (3.3) becomes the Kolmogorov forward equation for the SDE (2.2) for particles, thus
gs plays the equivalent role of a probability density measure that uniformly describes the
statistics of all the particle trajectories {X!}. Notice that the control o depends on the
entire density ¢s, thus finding the optimal control finally leads to an MFG problem.

We can find the associated stochastic differential game with mean-field interaction based
on the SDE model (2.2) using the proposed cost functionals in (3.4),

(3.9) vy (g,%) ::qN(.i)I’l(fN(,)E{é (X%vQYJY) + /tT [L (Oéév (X;)) + F (Xé,qév)} ds},

st dX=[TgY (X1) + o (X))] ds + V2DAW!, t<s<T, Xi~q,
for samples i = 1,...,N. Above, ¢V is the empirical distribution (3.8) of the group of fi-

nite players { X! g\le’ and oY is implicitly dependent on the empirical distribution of the N
samples. The advantage of using this finite particle model (3.9) is that we are able to find

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 10/03/25 to 104.28.104.206 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MFGs FOR CONTROLLING NONLINEAR FLUID SYSTEMS 1689

the optimal control for the complex flow field by controlling the finite number of Lagrangian
tracers. This enables an efficient Monte Carlo (MC) type approach to capture the continuous
fluid solution. We refer to [28] for the mean-field limit from the above stochastic differential
game with mean-field interaction to the mean-field game system in the central planer form.
We will also test this finite ensemble model in the numerical tests in section 6.2.2.

4. Functional Hamilton—Jacobi equations for the value functions. In this section, we
demonstrate that the MFG models in (3.2) and (3.5) can be recast in Hamiltonian forms.
Thus the value functions U(p,t) and V(p,t) satisfy the corresponding functional HJEs. Under
the functional HJE formulations, the coupled MFG-2 model can be shown to be related to a
modified MFG-1 model with given optimal solutions.

4.1. Functional HJE for the MFG-1 model. First, the MFG-1 model (3.1) for controlling
tracer density transport has the Hamiltonian functional

(4.1) (0= [ [;rv¢\2+v¢-frq<x>+DA¢—F<x,q> p(x)dz

with ¢(x) the solution of the prescribed flow vorticity field. It can be found that the Euler—
Lagrangian equations (3.2) follow the Hamilton dynamics for s € [t,T],

0 _
(42) asps—w(psv(bs;q‘s)v 68¢S_ 59 (p57¢87QS)

with p, = p, and g5 given by the background advection flow solution. In particular, since
q(x) is given we can define the local Hamiltonian function H; according to the separable
Hamiltonian functional (4.1) as

1
(4.3) Hy (2,p:0) = 5 > +Tq(x) p,

and the corresponding Lagrangian becomes
1
L (w,b:q) =sup{b-p— Hy (z,p;0)} = 5 b~ Tq (2)|",
P

and with the convexity the supremum is reached at p* = b — T¢(z). Thus, the Lagrangian
functional can be redefined as L(z, «; q) := L(,b(z, @); ¢) = 1|a|%. The Hamiltonian functional
(4.1) can be represented by the local Hamiltonian (4.3) as

Hy (p, d10) = / [Hy (2,V6:q) + DAG — F (2,9)] p (x) da.

And we can introduce the optimal “total velocity” as bs(z) = 0pH1(x, Vos;qs) =T qs(x)+ V.

Since the MFG-1 system (3.2) is decoupled, we can directly compute the value function
and its relation with the HJE solution ¢s, t < s < T. Let U(p,t;q) be the optimal value
function from the MFG-1 model (3.1) with the given flow solution ¢ = g. The following
proposition gives the functional HJE for the MFG-1 model.
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Proposition 4.1. Given a fluid vorticity field {qs }1<s<7, let U(p,t;q(-)) be the optimal value
function of the MFG-1 model (3.1), whose minimizer is the classical solution (ps,ps) to the
MFG system (3.2). Then we have ¢y = —%(pt@,t;q(-)) for any t <T and the value function
satisfies the functional HJE

su
U (p,t;q()) — Ha <p, ~% (p,z,t;4(-)) 3%) =0 Vt<T,

(4.4)
U(p.T:4()) = [ Glaar)p(@) o

In the above, given a fluid vorticity field ¢(-) := {gs}t<s<r, we denote U(p,t;
q(+)) == U(p,t;{qs}t<s<T) to indicate that the dependence of U on ¢(-) is in terms of the
whole given curve, while the dependence of U on p is only in terms of the initial state p; = p.
The proof of Proposition 4.1 is given in the supplementary materials (supplement_mfg.pdf
[local/web 1.78MB]).

4.2. Functional HJE for the MFG-2 model. Similar to the last subsection, the Hamil-
tonian functional for the MFG-2 model (3.4) can be found as

45 Halap)= [ (51964 Vo Ta) ale) - DV Ve a7 (o).

The following Hamiltonian system is still valid for the MFG-2 model (3.5):

57‘[2 57'[2

4. sqs = (< \l4s,¥s)» sPs = "< \lsy¥Ps) -
(4.6) 9sq 5¢(qs0) dsp 5q(q<p)

We can also use the local Hamiltonian function to express the functional Hamiltonian

1
Hy (x.p.q) =5 > +Tq p,

(4.7)
Ha(0:9) = [ [H (2.9 ().0)(x) - DVio- Valdo — F(q).

Above, we have Ha(z,p,q) = sup,{b(¢,a) - p — L(a)} = sup,{(Tq + a) - p — 1|’} with
the optimal a* = p. The optimal total velocity is defined in the same way as bs(z) =
OpHa(qs(x),Vips(x)) = Tqs(x) + Vs(x). Notice that compared with (4.2) the Hamiltonian
functional (4.7) becomes nonseparable, i.e., Ha(x,p,q) is not in the form of fi(x,p)+ fa(x,q)
[18]. This nonseparable Hamiltonian comes from the nature of the original nonlinear fluid
drift.

We have the following proposition for the value function of the MFG-2 model.

Proposition 4.2. Assume the MFG-2 model (3.4) achieves an optimal solution (ps, ¢s)i<s<T,
which solves MFG-2 system (3.5). Then the optimal value function V(q,t) in the MFG-2 model
(3.4) is the solution to the following functional HJE:

(4.8) oV (q,t) — Ha (q,—v) =0Vt<T; V(¢,T)=G(q).

dq
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In detail, for the MFG-2 model we have
W, 2 5V
o (0.1 /' a0 a@art [ (V5 a0 Tol))afa)as

—D/ (¢,z,t)-Vq(x)de+ F(q) =0, t<T.

In addition, the contml solution Osps = g';z (gs, ps) satisfies ps(z)= —%(qs,x,s).

The proof of Proposition 4.2 is essentially in parallel with the proofs in [20, 7] according to

Hamilton system (4.6) and can be found in the supplementary materials (supplement_mfg.pdf
[local/web 1.78MB]).

4.3. Link between the MFG-1 and MFG-2 models. From the previous discussions, we
find that the MFG-1 model (3.1) gives decoupled equations for ps and ¢, especially with the
linear continuity equation (3.2a) given the flow and control fields gs and ¢5. On the other hand,
the MFG-2 model (3.4) leads to closely coupled forward and backward nonlinear equations,
which require additional efforts for strategies to effectively solve the optimal functions. Here,
we establish a link between the two models, such that the MFG-2 model can be approached by
an approximated form of the MFG-1 model. This enables the effective computational strategy
that will be discussed next in section 5

In order to develop a decoupled approximate model, we introduce the functional Hamil-
tonian on the functions (g, $) based on some given solutions (g, ),

49 #a(idiae) = [ | (5[99 + 7095+ D8G) i+ (0 Ta- F o) s

Comparing with the Hamiltonian (4.5), we modify the coupling term, (V¢ - Tq)q, into two
separable components, (Ve - T§)q and (V(;B -Tq)q. The running cost F(q) is also replaced
by the separable one, [ F(z,q)¢. Therefore, this new Hamiltonian functional Ho fits into the
MFG-1 model (4.1) with a modified running cost function

The new Hamiltonian functional (4.9) leads to the following decoupled forward and backward
equations:

(1102) D= 5;;2 (a6 00) ==V [ (Tas +¥,) @] + D2,
(4.10b) sy = 6;22 <QS7(557QS7S08> = —% ‘Vtis ' T4, Vs - DAGy+ F(w,00,5,)

with initial condition G;(z) = §(x) and final condition ¢7(x) = —G(z,qr). Notice that the
equations (4.10) agree with the MFG-1 model (3.2) using the new running cost function
F. Therefore, using Proposition 3.1 the solutions (gs,ds),t < s < T, to (4.10) solve the
corresponding optimization problem as a modified MFG-1 model,

(4.11) q(_i)rg(,) (/G(xaQT)(jT (z)dz + /tT {/ {L (Gs) + F(x,qs,as)} Gs () da:} ds) :

s. t. asqs+v[(TQS+&s)q~8]:DAq~Sa tSSST) andqt267
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conditional on the given functions (gs,¢s) with as = Vs. Here, we simply use F(x,q,a) to
represent F'(x,q,¢) when o = V. More important, if we can find the optimal solution such
that ¢s = ¢s,&s = ai, the optimal solution of (4.10) gives the solution to the MFG-2 model
(3.5). This implies that we may seek the optimal solution for the coupled MFG-2 model (3.5)
through the solutions from the above decoupled MFG-1 model (4.11) as a fixed-point problem.

Next, if we take the function ¢ from the solutions of the MFG-2 model (3.5b) according
to any solution of gs, this gives the optimal value function based on (4.11),

(4.12) dita()=_inf J@().a0)a() VI<T,

where ¢, = ¢ is the initial distribution of the tracers, and ¢(-) := ¢s(z),t < s <T, indicates the
dependence on the whole continuous curve. The following lemma can be found by comparing
the solutions in the corresponding HJEs.

Lemma 4.3. Given any t <T and (qs, ps),t < s <T, to be the unique classical solutions of
the MFG-2 model (3.5), the optimal solution (s, $s) of (4.11) with the optimal value function
U(G,t;q(+)) exists uniquely and satisfies the following relation:

(4.13) Ps (x)——(jg(ds,x,&q(-))—sos ().

Proof. Since g is given by the optimal solution of the MFG-2 model, it satisfies the
equation with the Hamiltonian (4.7)

OHo

65905 - _Tq (qs’ (ps) =—Hy (377 Vs, QS) - DASOS +F (337QS) -7 (QSVSOS) .

Similarly, ¢, is the optimal solution of the problem (4.11), which satisfies the MFG-1 model
with the new running cost F. Thus using the Hamiltonian (4.9) we have

Dss = —(Z{; (ds,és;qs,ws) =—H (%W%;%) — DA¢s + F (2,45, ) -

Notice that by definition we have the identities Hy(x,p;q) = Ho(x,p,q) and F(z,qs,¢s) =
F(x,qs) — T* - (¢sVs). In addition, ¢r(z) = ¢r(x) = —G(x,qr) have the same terminal
condition. Comparing the above two equations, we obtain q@s = s due to the uniqueness of
solution to the HJE. And the first equality in (4.13) comes by Proposition 4.1. [ |

With this lemma, we can link the two sets of optimal solutions (gs, QNSS) and (gs, ps) from
the MFG-1 and MFG-2 models accordingly as follows.

Theorem 4.4. Given the solutions (¢s,¢s),t < s <T, of the MFG-2 model (3.5), the optimal
value function U(qG,t) in (4.12) satisfies the following functional HJE:
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atl;l((j,t)—;/ V(;Z; (G,z,t) ‘1($)dx+/F(x,qt)(1(:c)dx
~ 51) - B 62/? R
(4.14) +/ Q@) Tar (@) Vo2 (@w0) +a (@) Ta @) Vo (q,x,t)] da

q@A?@mwaw,tSﬂ
q

+D/
(0.1 = [ Gloana(s)de

Especially, with the same initial condition ¢ = q = q, the modified MFG-1 model (4.11) will
give the same optimal solution as the MFG-2 model (3.4),

Gs (r) =qs (), ds () = s (x), fort<s<T.

Above, we suppressed the implicit dependence U(§,s) :=U(§,s;q(-)) on the entire curve
q(+) for cleaner notation. Notice that the value function ¢ defined in (4.12) is different from V
in (3.4), while Theorem 4.4 says that we can recover the same optimal solution of the MFG-2
model by solving the easier noncoupled system (4.10).

Proof. From Proposition 4.1, we have using the new Hamiltonian (4.9)
- - (. U
825” (Qa q, t) = %2 <Q> _67q~ (Q> xz, t) 5t Wt)

ou u - i

This gives the HJE (4.14) using the explicit expression for H; and ¢; = —%(Q},x,t) from
Lemma 4.3.
Next, since (gs, ps), s <t <T, is given by the optimal solution of (4.6), we have

0sqs ==V - [(Tqs + Vs) gs] + DAgs = -V - [(qu + Vcﬁs) qs} + DAgs

with <Z~>5 =g, s <t <T, from Lemma 4.3. Then the identical solutions for s, gs can be found
directly by comparing with (4.10a) with the same initial value and by the uniqueness of the
linear equation (4.10a). [ |

5. Computational strategies for the MFG models. With the explicit formulations for the
MFG models, we develop practical computational algorithms for solving the MFG equations
to find the optimal solution and control. Especially with the developed link between the
MFG-1 and MFG-2 models, we can solve the coupled nonseparable MFG-2 system based on
an iterative strategy using the modified form of the decoupled MFG-1 system (4.11).
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5.1. Practical choices of the cost functions. We propose the cost (activation) functional
to be optimized in the control problems in the following form:

(5.1) g(qT)+/tT£(qs,as)ds:g(qT)+/tT [/i(qs,as)derf(qs) ds,

where G(q) quantifies the terminal error in the final target state and L£(q,«) is the running
loss to characterize the cost along the control process, which is further decomposed to the cost
on the control forcing L and the cost on the running state F. First, the control cost i}(q, a)
is set as

~ 1 9
(52) L(g,0)=L(a)g, (@)=l
The term regularizes the strength of the control effect o according to the flow measure ¢g. In
particular, in the region with a large value of ¢, a condensed particle concentration (in terms
of probability measure) or a strongly turbulent fluid field (in terms of the flow vorticity) is
implied. Thus the average kinetic cost for this region is the quadratic function of the control
|a|? weighted by the particle concentration q.

Specifically, the functional F(q) calibrates the energy fluctuations away from the initial
and final states during the entire control process, and G(q) calibrates the difference at the final
time step t = T. It is natural to require that the flow energy cannot deviate too much away
from the starting initial state (); so that the level of turbulence is maintained at a controlled
level, while it should also approach the final target state (J; at a rapid rate. Therefore, we
consider the following two common choices of functionals according to the initial and final
states Q;(x) and Qf(x):

o Lo-distance: The cost functionals compute the mean square deviation from initial and
final target state using the linear combination ¢’ =v(¢ — @Q;) + (1 —v)(¢ — Q) with
0<y<1and v =7T¢, that is,

) F@=y [|ufae= [1Te e withF(q,x)::Z:T*.Tq/’
1 2 : 0g
(5.3b) g(qT)=2/|qT—Qf\ dz withG (¢, x) ::@:qT—Qf.

o KL-divergence: Since q can be viewed as the probability density of the Lagrangian
tracer field, the cost functionals can compare the KL-divergence (relative entropy)
with the distributions from the linear combination of the initial and final target states

Q=7Q; + (1 —7)Q with 0 <~ <1, that is,

(5.4a) F(q) = Dx1 (q,Q) = /qlog %dx with F' (¢, x) := (Z]: =1+log %,
)
(5.4b) G (qr) =Dk (qr,Q¢) = /qT log 9T 42 with G (q,z):= 9 =1+log ar.
o og Qs
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5.2. Algorithms to solve the decoupled MFG-1 model. Here, we propose computational
strategies to solve the MFG models (3.1) and (3.4). Equivalently, we can develop ensemble-
based control strategies based on the stochastic control models (3.6) and (3.7). First, for the
MFG-1 model (3.1), the optimal solution can be found by separately solving the decoupled
forward and backward MFG equations (3.2).

Notice that above in solving the forward equation (3.2a), an alternative approach is to
adopt the SDE formulation (3.6) to get the approximated optimal density solution ps through
an MC ensemble method. This approach could be advantageous in practical problems to
efficiently recover the density distribution. Therefore, we can propose the ensemble-based
algorithm corresponding to Algorithm 5.1.

At the limit N — oo, Algorithm 5.2 for finite ensemble approximation converges to the
original Algorithm 5.1 at the continuum limit. This ensemble approach provides an effective
alternative strategy to recover the target optimal tracer density without running the usu-
ally more expensive Fokker—Planck equation especially in the higher-dimensional cases. The
ensemble approach will become more useful next for controlling the transition in flow states.

5.3. lterative algorithm to solve the coupled MFG-2 model. Recall that the optimal
solution for the MFG-2 model solves the coupled MFG-2 system (3.5). In solving the MFG-2
model (3.4), we need to deal with the coupled forward and backward equations (3.5) together.
To address this difficulty, we first solve a separable MFG according to Algorithm 5.1 or 5.2.
Then the optimal solution is achieved by an iterating approach as finding a fixed point.

We introduce a map (gs,&s) = P(gs,as) defined as the solution of the modified MFG-1
model (4.10) with a given {gs,as},t < s<T, i.e., (¢s,0s) solves

Algorithm 5.1. MFG-1 model for optimal control of tracer field using PDE model.

Model setup: Given flow vorticity field {gs }+<s<7 and initial tracer density p(z)
1: solve the HJE (3.2b) backward in time to get the function ¢s(z) with ¢r(z) =
—G(z,qr) at s=T.
2: recover the control for the entire time window as(z) = Vs(z),t <s<T.
3: solve the continuity equation (3.2a) forward in time using the optimal control as(z) to
get the optimal tracer density starting from the initial configuration p(x) = p(x).

Algorithm 5.2. MFG-1' model for controlling tracer field using finite ensemble model.

Model setup: Given flow vorticity field {¢s}+<s<7 and initial tracer density p(x)
Initial condition: generate random samples X; ~ p(z),i=1,..., N, via p(z).
1: solve the HJE (3.2b) backward in time to get the function ¢¢(x) with ¢r(x) =
—G(z,qr) at s=T.
2: recover the control ag(z) = Vos(z),t <s<T, for the entire time window.
3: solve the SDE (3.6) forward in time independently for each sample trajectory
Xit<s<T.
4: recover the optimal tracer density using the empirical distribution pY (z) = 4 >, dx: ().
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(5.50) 0uis + V- |(Tas + V) @] = DAG,

- ~ 12 ~ -
(5.5Db) Dss + % ]ws +Tqs - Voo +DAbs = F(z,q5) — T* - (gss) ,

with the initial and final conditions §;(z) = ¢(z) and ¢7(z) = —G(z,qr), and the new control
&s = Vs. The above equations (5.5) define a separable problem that is easy to solve individ-
ually. From Theorem 4.4, if we can find a fixed point of the map, (gs,as) = P(gs, as), based
on the modified MFG-1 model (5.5), the fixed-point solution provides the solution for the
MFG-2 system (3.4). Therefore, we expect the solution of (5.5) to give good approximation
to the optimal solution of the MFG-2 model given a close estimate of the input states {gs, s}
(see Claim 5.1). If we further assume the solution of (3.5) is unique, we can solve the MFG-2
model through an iterative algorithm.

Based on the above consideration, we propose the following iterative strategy aiming to
minimize the value function Z(gs, as) of the MFG-2 model. Let {q~§”“) , dﬁ"“)} be the solution
of (5.5) using the input functions {qgn),agn)} (from the previous iteration step). First, we
construct a new state ¢5 as the linear interpolation of the two functions

(5.6) g = pug™ + (1 — o) g

with 0 < p < 1. Then, the corresponding new interpolation state of o is constructed based
on the consistency with the continuity equation such that

0sqs +V - [(Tqk + ak) ¢&'] = DAgL.

This can be achieved by comparing the equations for {§§n+1),&§n+l)} and {qsn),agn)}. The
solution can be found to follow the relation

(n) (n)

< (n+1) ~(n+1)
as 'qs + (1 — Qs s n ~(n
(5.7) ot = K2 4 o (1= N(n+1;1 F(1-p) (qu ) T4 +1>)_
Hqs +(1_M)QS

Finally, the updated state is defined by the optimal p at the point that minimizes the value
of the cost function (3.4) of the MFG-2 model, that is,

(5.8) g" Y =g o) = o with pf = argmin Z (¢¥, o) .
0<p<1

This finishes the one-step updating for the fixed-point iteration. We describe the algorithm
using the iterative method to find the optimal control solution as follows.

A sufficient condition for the stability of the iterative scheme. In Algorithm 5.3, a
critical step is taken to update the next stage solution using the optimal linear combination
(5.6) instead of directly adopting the solution from (5.5). This is confirmed by the following
necessary condition describing the stability of the iteration scheme.
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Algorithm 5.3. MFG-2 model for optimal control of the flow field.

Initial condition: set up the initial flow vorticity q§°) and control functions ago).

1: for n < Nyax while d(q (n),qgn_l)) > e or d(agn),agn_l)) >e do

2: solve the separable equations (5.5) to get the new states {d§n+1), D } with input
{an agn)}

3: find the optimal p* that minimizes the cost function Z(g5,a%) by line searching
with a sequence of y; = +,i=1,...,L — 1, using the combination of the two states (5.6)
and (5.7).

4: update the next states qgnﬂ) =¢! and alm ) — o

5: end for

Claim 5.1. With the cost functions defined in (5.3) or (5.4), the value of the target cost
function in (3.4) is not guaranteed to decrease if the solution of (5.5) is directly applied to
update the next stage. That is, we may have

I((js,ds) > I(Q57as)

with =0 during some iteration steps. On the other hand, one can expect to reduce the value
of the cost function from the input (qs,as) in every iteration,

(5.9) Z(q¥, k) <T(gs,s),

by taking some p >0 in updating the solution in (5.6).

Proof. Denote the value functional to be optimized above as

J(ds,ds;qs,as)z/G(:v qr)qr (x dx+/ / (as) (x qs,as)} s (z) dads.

First, since (§s,as) is the optimal solution of the problem (4.11), they minimize the corre-
sponding value function

(5.10) T (s, @5 qsy 0s) < T (qs, s; gs, )

as long as we choose (gs, as) also satisfying the continuity equation in (3.5a).
On the other hand, the target loss function to minimize has the form

T (gs,as) =G (qr) +/tT [/L(as)qs (z)dz 4+ F(gs)| ds.
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To evaluate the effect from the one-step update, we define the improvement function
g (/L) :I(qg7ag) - I(QS7as)
T
<lo) - [cwama]+ [ 7@~ [reaa]a
t
(5.11) T
+| [ewanm-6an|+ [ | [F@a)e-F@]as
t
T
+ / [L (O/;) qg —L (ds) (js] +/ [/ (QSOCS) : T((js - QS):| ds.
¢

Above in the inequality, (5.10) is used to link the solutions from the modified MFG-1 model
(5.5) with the updated new state ¢5 = ugs + (1 — ) gs.
First from (5.6) and (5.7) with p =1, we have ¢5 = g5, o = as, thus

9(1)=Z(gs,as) — I (gs,xs) =0.

Then at the other end point with p =0, that is, ¢§ = gs, ok = &, we can compute the explicit
expressions for the right-hand side of (5.11) based on the explicit loss functions. Also since
the terminal and running costs G and F share similar forms in both Ly and KL-divergence
cases, we compute the terminal cost below and the running cost will follow with very similar
expressions. For the Ls loss (5.3), we find

[ng (Gr) — /GLQ (JU,CIT)(?T] + [/ Gr.(z,qr)qr — G, (QT)] = ;/@T —qr)* >0,

and for the KL-divergence loss (5.4)

[QKL (qr) — /GKL(xaQT)CjT] + [/ Grkr(z,qr)qr — OkL (QT)] :/QT 10gZT > 0.

T

In the last line of (5.11), the first term will vanish at p = 0 since ¢¥ = g5, = &s. However,
the sign of the second term with the integrand, (gsas) - 7(ds — ¢s), becomes indefinite and
could frequently reach positive values during the iterations. Therefore, a positive value could
be reached on the right-hand side of (5.11) using both loss functions. Thus, the total cost Z
is not guaranteed to decrease with direct update using a constant u = 0 (see Figure 3 as a
confirmation from direct numerical results).

Finally, notice that using the specific loss functions (5.3) or (5.4), the function g(u) =
Ap? 4 Bu+C+0O(||@s — gs||?) can be expressed as a quadratic function about y in the leading
order expansion. Further, it can be checked that the coefficient before the p? term is positive.
Thus to ensure there exists some p* such that g(u*) < 0, we only need to consider the case
with ¢g(0) > 0. In addition, taking into account g(1) = 0, the property of the quadratic function
suggests that negative values of g(u) will be reached with some p > 0 unless the single critical
case with minimun reached at p=1. |
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6. Model performance using a prototype test model. In this section, we demonstrate
the performance of the proposed MFG models through detailed numerical experiments. A
prototype nonlinear advection-diffusion model modified from the viscous Burgers equation is
used as a test example simulating multiscale vortical flows. This simple model preserves many
key properties of more general turbulent models appearing in many fields, while providing a
clean tractable setup for confirming the important basic properties discussed in the previous
sections.

6.1. The modified Burgers equation as a prototype test model. In the numerical tests,
we introduce the control problem for the modified viscous Burgers (MVB) equation

(6.1) 0sqs () + V - [us (z) g5 ()] = vAgs () + fs (x)

with the control forcing in the form fs = —V - (asqs). The solution is defined on the one-
or two-dimensional periodic domain of size L. The vorticity field gs; can be projected on
the Fourier modes; then the advection velocity field us can be expressed under the spectral
representation based on each wavenumber k = (k;, k)T as

us (€)= Tqe (@) = Y ilk| 72 (ky, —ka)T G (5) €™ and qs (x) =) _ i (s) €™
k|0 k

In the one-dimensional case, the velocity field reduces to the simpler form us(z) =3, 4, ik~1
Gr(s)e*®. In fact, it is direct to check that if u,(x) satisfies the solution of the viscous Burgers
equation, gs = —0yus gives the solution of (6.1). Therefore, a sequence of exact steady
state solutions can be constructed for the MVB equation (6.1) based on the explicit analytic
solutions ug [5], i.e., with two parameters o, a,

(6.2) Qo.a () = 2v0?sech? (o|x — a) .

The steady solutions indicate the persistent coherent structures in general turbulent flow fields.
Therefore, we design the control problem for recovering the optimal control forcing f; during
s € [0,7] driving between two steady solutions from Q;(z) = Q, _1/2() to Q¢ () = Q4. 1 /2(T).
The cost functionals in the optimal control adopt the two typical examples in (5.3) and (5.4).
It shows that many representative features of general interest including multiscale turbulent
behavior and extreme events [1, 36] can be generated in the simplified MVB model (6.1).

In the numerical experiments, the MVB equation is solved by a pseudospectral method
with a Galerkin truncated spectral representation of J = 256 modes in both x and y directions.
The finite truncation model is suitable for more general applications with explicit multiscale
turbulent spectra. The equation is integrated in time by an explicit-implicit Runge-Kutta
method with the implicit part only for the dissipation term. Model parameters in the numer-
ical tests are listed in Table 1. A typical steady state solution of the MVB equation is plotted
in Figure SM1 in the supplementary materials showing the typical coherent flow structure. In
the following, we first consider the simpler one-dimensional case giving a detailed discussion
on both the MFG-1 model (3.1) for the control of the transport of passive tracers and the
performance of the iterative strategy solving the MFG-2 model (3.4) for the control of the flow
vorticity equation. Then, the control performance of the control model on the more complex
two-dimensional flow equations is tested.
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Table 1
Parameters used for the MVB test model. The last three columns show control parameters for the initial
and final target states using (6.2).

v L J At T ~y o a
0.5 10 256 1x1073 10 0.2 1 +L/2

6.2. MFG-1 model for tracer field control. First, we show the performance of the tracer
control model in the one-dimensional case according to Algorithms 5.1 and 5.2. The advection
flow solution u; is generated by the steady state solution Q1 o(z) of (6.1). We set the tracer
initial density as Qi(r) = Qi _r/2(7) and the final target density as Qy(x) = Q1 r/2(7).
Therefore, the tracer control problem asks to find the optimal control action that drives the
tracers across the “barrier” set by the advection flow in the center of the domain. Both the Lo
cost (5.3) and the KL-divergence cost (5.4) are applied in optimizing the cost function (3.1).

6.2.1. Control of tracer density function with the PDE model. Following Algorithm 5.1
for the MFG-1 model, we first find the control action oy = 0,¢s by solving the decoupled
backward equation (3.2b) using the prescribed solution of gs, using the corresponding costs
F and G from (5.3) or (5.4). Next, we solve the forward equation (3.2a) to get the controlled
tracer density field using the achieved optimal control solution ¢s. The solution gives the
optimal controlled tracer density field ps together with the optimal control forcing «, exerted
on top of the transporting flow velocity us = T ¢s.

The optimal solutions for the MFG-1 model achieved with both Ly and KL-divergence
cost functions are plotted in Figure 1. Comparable control solutions are found under the
different forms of cost functions. In this control problem for tracer density, the initial tracer
field concentrates on the left side of the domain at —L/2 = —5 while the target field lies on
the right at L/2 = 5. With the steady advection flow field us as shown in Figure SM1, the
passive tracers are driven toward the center of the domain at z = 0. The control forcing is
required to guide the tracers going against the tendency from the advection flow velocity. As
a result, the controlled tracer field ps diverged into two routes in opposite directions, one
traveling across the center region of the domain and the other going across the boundary
exploiting the periodic boundary condition, converging at the final target location. A strong
control forcing «; is exerted at the starting time to drive the tracer density quickly toward
the target, then is reduced to smaller values to balance the running cost part of the control.
The tracer density fields finally reach the target state pr with good agreement, indicating
successful control performance in both cases under different losses.

6.2.2. Control of empirical ensemble distributions with the SDE model. Correspond-
ingly, we can use the ensemble SDE approach for solving the controlled optimal tracer density
through estimating the empirical measure from the samples. Especially, Algorithm 5.2 for
the tracer control model provides an effective way to generate samples agreeing with any
non-Gaussian PDFs by setting it as the targeting state X% ~ Q for the terminal tracer den-
sity. Here, the initial MC samples of the tracers Xé ~po=N (,uo,ag) can be easily sampled
from a normal distribution. The optimal control forcing «; is still solved from the backward
HJE (3.2b) with the terminal condition G defined by the target state Q¢. But instead, the
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Figure 1. Optimally controlled solutions of the MFG-1 model for tracer transport with Lo and KL-divergence

loss functions.

Table 2

Mean square errors of the ensemble approzimation of the target PDF (6.2) with different sample sizes.

N 500 1000 5000 10000
oc=0.5 2.1x1072 6.6 x 1073 1.2x 1073 7.3%x 1074
o=1 5.8 x 1073 5.1x 1073 1.1 x 1073 8.6x 1074

forward continuity equation is solved by the MC approximation of the SDE (3.6). Therefore,
the resulting ensemble members through the controlled SDE model sample the target PDF,
% >0 x:. ~ Qy. This method will become more useful for sampling high-dimensional PDF's
including highly non-Gaussian structures.

In Figure 2, we show one simple test to sample non-Gaussian PDFs in the shape of the
functions (6.2). We run the SDE model with a relatively large ensemble of N = 1 x 10*
samples. The ensemble size will be sufficient as long as it captures the main shapes of the
PDFs. The accuracy using different sample sizes is listed in Table 2, and the errors mostly
happen in the tail region where a smaller number of particles are used. The initial samples
are drawn from a standard normal distribution. Two target PDFs with linear tails of different
extents 0 = 0.5, 0 =1 are used. It shows that the final empirical sample distributions of the
tracer particles accurately capture the non-Gaussian shapes in the PDFs; which also agree
with the PDE control model results. Deviation only appears in the long tail region due to
insufficient representation of the extreme events. The ensemble representations will also be
applied next using the SDE model for controlling flow vorticity states.

6.3. MFG-2 model for flow field control. Next, we test the one-dimensional flow control
problem formulated by the MFG-2 model. In this case, we need to solve the coupled joint
equations (3.5). Different from the previous tracer control problem, the continuity equation
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, _initial PDF drawn from a normal distribution 10° sampled pdf by controling the tracers, o = 0.5 , sampled pdf by controling the tracers, o = 1
) - .
— -initial — -target - -target
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Figure 2. Sampling non-Gaussian PDFs by controlling tracer density. Solid red lines show the results from
the PDE control model, and the MC' approach using the SDE model is shown in the yellow bars from the
histogram.
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Figure 3. Improvement in the target value function Z(qt,at) —Z(qs,ay) with different values of p during
the first two iterations using Lo and KL-divergence cost.

for ¢; becomes nonlinear due to the explicit coupling with the advection velocity us = T gs.
The forward and backward equations become closely coupled. The new iterative approach
in Algorithm 5.3 is applied to solve the corresponding decoupled solution {gs, $s} from (5.5)
using the solution {qgn), (pgn)} from the previous iteration step to find the converged optimal

solution.

6.3.1. Effective updating strategy during iterations. We first confirm the necessary con-
dition in Claim 5.1 for stable converging iterations. The initial states for {qgo),gpgo)} in the
iterative algorithm are computed by solving the tracer control problem. The interpolated
new state ¢* = pq" 4+ (1 — p)q is required to be updated using the optimal combination
parameter p # 0. In Figure 3, we plot the improvement in minimizing the value function
Z(¢"*, o) — Z(¢"™,a™) under the Ly and KL-divergence cost during the first two iteration
steps. Consistent with our analysis, the cost Z(gs,&s) as a function of p gives approximately
a quadratic structure with 0 at the right end p = 1 and indefinite values on the left p = 0.
The cost function value by directly using the decoupled model solution {gs,$s} is indicated
at p=0. The direct solution is not guaranteed to reduce the target cost function from each
step of the iteration. This confirms the inherent obstacle due to the instability in the iteration
scheme especially during the initial iteration steps with larger errors. On the other hand, an
improvement with negative values can always be achieved through a direct line search of the
optimal p to minimize the cost. Furthermore, it shows that the choice of the optimal u can
also effectively accelerate the convergence demanding only a few iteration steps.
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Figure 4. Total value function I" = I(qu"),ag")) and the errors in the updated states {qgn),agm} during
the updating iterations using both Lo and KL-divergence loss.

As a more detailed illustration of the error development during iterations, Figure 4 plots
the value function 7 (qgn) , aﬁ”)) as well as the L9 errors in both states q§"), aﬁ”). Each iteration
update solves the separable forward and backward equations (5.5), and the computation time
is just several seconds using a laptop computer. It shows that the value function decreases
rapidly to its minimum value within a few iterations (~ 5 under both Lo and KL-divergence
loss). In comparison, we also plot the evolution of the loss function values using a fixed
@ = 0.5. Then, the value function cannot be minimized due to the frequent violation of
the decreasing condition. This confirms the necessity of taking the adaptive choice of the
combination parameter pu to reach the target fixed-point solution in the proposed iterative
algorithm. We continue running the iterations further to longer than necessary steps. It
shows that the errors in the target states keep decreasing to the refined optimal solution
during the continuing iterations. This again confirms the stability of the proposed method.

6.3.2. Control performance with different cost functions. Here, we show the optimally
controlled solutions achieved from the iterative algorithm. The final converged optimal solu-
tions using both Lo and KL-divergence loss functions are displayed in Figure 5. The controlled
trajectories for gs show a similar structure as in the tracer control case, while they are through
completely different dynamical equations. This can be seen by the very different structures
in the optimal control solutions of «,. In fact, the solution illustrates the optimal route of
transition between the two steady states of the flow solutions under the loss function.

Equivalently, we can solve the flow control problem using the SDE formulation (3.9) with
a finite number of samples as described in the last formulation in section 3. In this approach,
instead of solving the continuous forward equation for ¢; we run an ensemble simulation for
the Lagrangian tracers

AX? = [T¢Y (XI) +al (X7)] ds + V2DdW?

with ¢+ = 1,..., N. Notice that the N samples are linked together by the empirical recov-
ery of the flow field from the samples ¢ (z) = %Zf\;l Sx:(z). The optimal control o is
solved through the backward HJE also using the empirical estimate ¢¥. The initial sam-

ples agreeing with the initial state ); are drawn by the strategy introduced in section 6.2.2.
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Figure 5. Optimally controlled solution of MFG-2 model for vorticity transport with different loss functions.
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Figure 6. Evolution of the controlled vorticity state q: from the SDE model using the KL-divergence loss
function.

The ensemble-based particle approach becomes very useful in the generalization to higher-
dimensional cases where solving the forward Fokker—Planck PDE using finite difference or
finite element methods becomes highly expensive. Figure 6 illustrates the controlled solutions
using the KL-divergence loss at several time instants from the SDE model using N =1 x 10*
samples. The corresponding optimal PDE solution in Figure 5 is compared on top of the SDE
solution from the empirical distribution. Good agreements are observed in the two equiva-
lent approaches indicating effective skill in the control methods. In addition, a more detailed
comparison of the optimal value function V(q,t) from different initial state ¢ = Q, _1 /2 and
starting time ¢ is shown in Figure SM2 in the supplementary materials, where the optimal
solutions go through a relatively similar transient stage to reach the final target state.

6.4. MFG models for controlling two-dimensional flows. Finally, we test the perfor-
mance of the MFG models on controlling the two-dimensional flow fields. The same algo-
rithm is applied to solving the corresponding two-dimensional MVB equation (6.1) in the
same fashion. In this case, the equation becomes the diffusive transport of the vorticity field
¢s- The same steady solutions as in (6.2) are taken as the initial and final target states cen-
tered at (—L/2,—L/2) and (L/2,L/2), respectively. The same set of parameters is applied
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Figure 7. Total value function I" = I(q§">,a§">) and errors in the updated states {qﬁ”),<p§”>} during up-

dating iterations using both Lo and KL-divergence loss in the two-dimensional flow.
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Figure 8. Optimal controlled solutions qs in the two-dimensional control problem at several time instants t
under both the Lo and KL-divergence loss functions.

in the two-dimensional flow control test, and the same loss functions (5.3) and (5.4) are used
measuring the errors in the two-dimensional functions. Following the same strategy as in the
one-dimensional tests, we first apply Algorithm 5.1 to get the initial guess qgo),gogo . Then the
optimal control solution is achieved by the iterative strategy in Algorithm 5.3.

The value function as well as the errors during each iteration are plotted in Figure 7.
Still, we run a larger number of iterations to illustrate the evolution of the errors. As in
the one-dimensional case, the loss value quickly converges to the minimum value after only a
few iterations under both cost functions. The fast convergence is especially important in the
two-dimensional case due to the much higher computational cost. The errors in the states
q§") and gagn) also quickly drop to small values implying fast convergence and keep decreasing
with more iterations just refining the detailed structures of the final solution. The optimal
trajectories for the optimal solution ¢s are shown in Figure 8 as well as the corresponding
control ¢, in Figure SM3 in the supplementary materials. It is observed that the optimal
control forcing successfully moves the flow vorticity from the initial state to its final target.
One interesting observation in the two-dimensional case is that the controlled flow solution
demonstrates different routes to the target under the Lo and KL-divergence loss functions.
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Under the Lo loss, the solution goes through a gradual transition with decaying value in the
initial state. On the other hand, under the KL-divergence loss, the initial density is moved
directly to the final target along the four symmetric directions with the doubly periodic
boundary. Further investigation is needed for a complete understanding of the distinctive
behaviors under different loss functions.

7. Summary. We proposed MFG models for controlling the nonlinear transport of tracer
densities and flow vorticity fields under a unified mathematical framework. The main results
are summarized in the following new developments:

e Two MFG models (MFG-1 and MFG-2) are designed for controlling the passive tracer
density and flow vorticity field.

e Equivalent stochastic formulations are derived by tracking Lagrangian tracers/particles
immersed in the advected flow field as interacting players.

e The corresponding functional HJEs for the value functions are also derived in both
the noncoupled tracer control and the coupled flow control problems.

e A link is built between the tracer and flow control models as well as their optimal value
functions showing an interesting connection between the two proposed MFG models
with a nonseparable Hamiltonian.

e Effective iterative algorithms are proposed for solving the MFG model as coupled
forward and backward equations in the flow control problem.

The performance of the proposed MFG models and algorithms is tested on the MVB equation
displaying representative multiscaled and nonlinear dynamics. Fast convergence and effec-
tive control performance are demonstrated in both the one- and two-dimensional test cases
and under loss functions in different metrics. For future research, more detailed convergence
analysis about the iterative scheme is to be developed quantifying the approximation error
and convergence rate of the new methods. It is also interesting to compare the performance of
related methods such as proposed in [30, 17]. In practical applications of the idealized math-
ematical models, a closer link needs to be built in modeling the macroscopic flow dynamics
and the controlled motion of microscopic fluid particles. We plan to design efficient ensemble
methods using the proposed numerical algorithms and develop suitable strategies adaptive
to more general high-dimensional multiscale complex fluid systems such as soft matter and
plasma flows [15, 16, 22].
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