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Abstract

Microscopic behaviors of chemical reactions can be described by a random time-changed Poisson pro
cess, whose large-volume limit determines the macroscopic behaviors of species concentrations, including 
both typical and non-typical trajectories. When the reaction intensities (or fluxes) exhibit a separation 
of fast-slow scales, the macroscopic typical trajectory is governed by a system of ε-dependent nonlinear 
reaction rate equations (RRE), while the non-typical trajectories deviating from the typical ones are char
acterized by an ε-dependent exponentially nonlinear Hamilton-Jacobi equation (HJE). In this paper, for 
general chemical reactions, we study the fast-slow limit as ε → 0 for the viscosity solutions of the asso
ciated HJE with a state-constrained boundary condition. We identify the limiting effective HJE on a slow 
manifold, along with an effective variational representation for the solution. Through the uniform con
vergence of the viscosity solutions and the Γ-convergence of the variational solution representations, we 
rigorously show that all non-typical (and also typical) trajectories are concentrated on the slow manifold 
and the effective macroscopic dynamics are described by the coarse-grained RRE and HJE, respectively. 
This approach for studying the fast-slow limit is applicable to, but not limited to, reversible chemical reac
tions described by gradient flows.
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similar technologies. 
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1. Introduction

In practical biochemical reactions, the separation of time scales among different reactions is 
a common phenomenon. For instance, a gene in its active state transcribes mRNA at a much 
faster rate than when it is inactive [19,14]. An important modeling question is to find an accurate 
and effective description of the system on the slow time scale such that the essential features, 
including macroscopic typical and non-typical behaviors, are still present. The mathematical 
question then is to show that both the multiscale and the effective descriptions are close to each 
other in the practical limit.

In this paper, we are interested not only in the macroscopic typical behavior of chemical 
reaction systems, but rather the non-typical fluctuations deviating from the typical dynamics. To 
be more precise, various macroscopic behaviors of the chemical reactions result from a multiscale 
stochastic random time-changed Poisson representation (see reaction process Xh in (2.3)). In the 
law of large numbers regime, the typical trajectory in terms of the concentration of species is 
described by a nonlinear ODE for the concentrations xε

i of species i ∈ ℐ , known as the reaction
rate equation (RRE)

dxε

dt 
=
∑︂
r∈ℛ

(︁
Ψ+

r,ε(x
ε) − Ψ−

r,ε(x
ε)
)︁
γr

=
∑︂

r∈ℛslow

(︁
Ψ+

r (xε) − Ψ−
r (xε)

)︁
γr + 1

ε

∑︂
r∈ℛfast

(︁
Ψ+

r (xε) − Ψ−
r (xε)

)︁
γr ,

(RREε)

where Ψ±
r represents the forward/backward intensity functions and γr is the reaction vector for 

the r-th fast or slow reaction with r ∈ℛslow or r ∈ℛfast, respectively. Here, we assume that only 
two time scales are present, and that the fast intensity functions are all on the O(1/ε) scale. In 
the large deviation regime, the non-typical trajectory can be characterized by a Hamilton-Jacobi 
equation (HJE) with its variational solution representation: given initial data uε

0 ∈ C1(Ω),

∂tu
ε(x, t) + Hε(x,∇uε(x, t)) ≤ 0, (x, t) ∈ Ω × (0,+∞);

∂tu
ε(x, t) + Hε(x,∇uε(x, t)) ≥ 0, (x, t) ∈ Ω × (0,+∞);

uε(x, t) = inf 
x∈AC([0,t];Ω), x(t)=x

(︁
uε

0(x(0)) +
t∫︂

0 

Lε(xs , ẋs) ds
)︁
.

(HJEε)

This HJE results from the nonlinear semigroup solution in the WKB expansion (cf. [16,10,11]) 
of the chemical master equation (see Section 2.4 for details). The multiscale Hamiltonian Hε and 
Lagrangian Lε are related by the Legendre transform, and
2 
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Hε(x,p) :=
∑︂

r∈ℛslow

Ψ+
r (x)

(︁
eγr ·p − 1

)︁+ Ψ−
r (x)

(︁
e−γr ·p − 1

)︁
+ 1

ε

∑︂
r∈ℛfast

Ψ+
r (x)

(︁
eγr ·p − 1

)︁+ Ψ−
r (x)

(︁
e−γr ·p − 1

)︁
.

(1.1)

Here Ω ⊂ RI is the domain of concentration vectors, which we assume to be bounded and having 
a positive distance to the boundary ∂RI+. We refer to Section 5 for more details, where viscosity 
solutions of state constrained HJE on bounded domains Ω are defined in Definition 5.2.

In the above descriptions, ε is fixed. To derive the effective descriptions, we analyze the limit 
ε → 0 for (RREε) and (HJEε).

For the typical behaviors described by (RREε) with multiscale reaction intensities, [6] ob
tained the effective reduced RRE using methods from deterministic dynamical system theory for 
singularly perturbed systems. The set of fast equilibria, ℰfast =

{︁
x : Ψ+

r (x) = Ψ−
r (x), ∀r ∈ℛfast

}︁
was determined in [6]. This set later defines the slow manifold ℳS = ℰfast ∩ Ω, to which solu
tions of (RREε) converge. On the slow manifold the effective dynamics can either be described 
by projected coordinates, or by coarse-grained variables that parametrize the slow manifold. [15] 
established a systematic probabilistic approach to determine effective chemical master equations 
and RRE applicable to large chemical networks. Under the detailed balance assumption, i.e., 
assuming the existence of an invariant measure such that the reaction process corresponding to 
(RREε) is reversible, gradient flow approach is used to study the convergence of (RREε) to the 
effective dynamics on the slow manifold; see [22] for linear reaction systems and see [21] for 
nonlinear reversible reaction systems.

In this paper, for general non-equilibrium chemical reactions, we study the convergence of the 
corresponding (HJEε) with state constraints and the characterization of its solution representation 
in the limit ε → 0. In particular, we are going to show that solutions uε of (HJEε) converge to u∗, 
where the limit u∗ solves a corresponding HJE involving an effective Hamiltonian Heff and an 
effective variational representation. This tracks and identifies the limiting behavior of the large 
deviation rate function for non-typical paths as ε → 0. The effective Hamiltonian dynamics for 
non-typical trajectories also recovers the effective RRE.

Challenges and strategies: The challenges are brought by (i) the large deviation from the 
typical path described by RRE, (ii) the irreversibility of general reactions, and (iii) the singu
larity in both the variational representation and HJE due to fast-scale reactions. First, to capture 
the multiscale dynamics for non-typical path, we study directly (HJEε). The typical trajectories 
solving (RREε) or the effective RRE can then be recovered as a special bi-characteristic for 
the (HJEε) or the effective HJE. In contrast to solutions of the RRE, where the boundary is re
pelling, we have to treat non-typical paths near the boundary carefully. In order to identify the 
effective variational functional in the asymptotic limit, we use Γ-convergence techniques. The 
action functional provides a priori estimates even when the trajectories are close to the boundary. 
Hence, our result on the Γ-convergence holds on RI≥0. However, to rule out degeneracy in the 
Hamiltonian due to loss of coercivity near the boundary, we restrict the analysis of HJE solutions 
to a suitable working domain and consider a state-constrained HJE. Secondly, for the irreversible 
issue, one loses the gradient flow structures in RRE, so the convergence to the effective dynam
ics on the slow manifold can not be obtained via the limiting behavior of gradient flows. We 
propose a weaker fast detailed balance condition (see (FDB)) to ensure the fast part of RRE be
ing a gradient flow. It requires the existence of a x∗

s ∈ RI+ := {x ∈ RI ; xi > 0 for all i} such that 
Ψ+(x∗) = Ψ−(x∗) holds for all r ∈ℛfast. Following [21], we assume in addition that the fast part 
r s r s

3 
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of the RRE satisfies the so-called Unique fast equilibrium condition (UFE) to exclude repelling 
boundary equilibria. These two conditions are to ensure the compactness of non-typical paths 
beyond the reversibility and also allow linking the effective dynamics on the slow manifold to 
projected or coarse-grained dynamics via a uniquely determined analytic reconstruction map R. 
Relying on this compactness and an explicit reconstruction of the reactive fluxes for the fast-slow 
system from the effective action functional ℒeff, we are able to show Γ-convergence of the action 
functionals ℒε (see Theorem 4.2). Finally, due to the singularity in the coefficients of Hamilto
nian Hε , the variational representation for the state-constraint solution is not uniform in ε. We 
take the singular limit in both the viscosity solutions to (HJEε) and the variational representation 
for the solutions. The convergence of viscosity solutions is obtained via a Lipschitz estimate uni
formly in ε and the convergence of the variational representation follows from the Γ-convergence 
of the action functional. Particularly, these two convergences are matched together on the slow 
manifold ℳS = ℰfast ∩Ω. We finally obtain that the limiting variational representation solves the 
effective HJE on the slow manifold ℳS. Moreover, we use the reconstruction map R to express 
the effective functionals and the variational representation by coarse-grained variables.

Main result: Below, we state our main result in a concrete way, with reference to the condi
tions, notations, and explicit functionals provided later (see Leff in (3.2), Heff in (3.3), Assump
tion 5.3, ℳS in (6.1) and Definition 6.3).

Main Theorem. Let Ω ⊂ RI be a bounded open domain such that Ω ⊂ RI+. Let initial data uε
0

be well-prepared satisfying Assumption 5.3, and assume both conditions (FDB) and (UFE). Then 
the viscosity solutions uε to (HJEε) converge to u∗ uniformly on K × [0, T ], for any compact 
subset K ⊂ ℳo

S. Moreover, for any (x, t) ∈ ℳS × (0,+∞), the variational representation of 
viscosity solution

uε(x, t) = inf

⎧⎨⎩uε
0(x(0)) +

t∫︂
0 

Lε(x(s), ẋ(s)) ds : x ∈ AC([0, t],Ω),x(t) = x

⎫⎬⎭
converges to the limiting variational representation

u∗(x, t) = inf
{︁
u∗

0(x(0)) +
t∫︂

0 

Leff(x(s), ẋ(s)) ds : x ∈ AC([0, t],ℳS),x(t) = x
}︁
.

Last, u∗ solves the effective HJE in the viscosity sense

∂tu(x, t) + Heff(x, dxu(x, t)) ≤ 0, (x, t) ∈ℳo
S × (0,+∞),

∂tu(x, t) + Heff(x, dxu(x, t)) ≥ 0, (x, t) ∈ℳS × (0,+∞),

u(x,0) = u0(x), x ∈ ℳS = ℳS.

(1.2)

The main theorem will be proved via the following procedures. In Section 2, after reviewing 
the motivation and basic setup for RRE and HJEs, we state both conditions (FDB) and (UFE), 
define necessary spaces separating fast-slow dynamics, and introduce the reconstruction map R. 
The effective dynamics on the slow manifold ℳS will then be equivalently connected to the 
4 
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coarse-grained or projected dynamics. In Section 3, we explicitly compute the fast-slow Hamil
tonian and Lagrangian with some lower bound estimates. We also compute the effective and 
coarse-grained Hamiltonian and Lagrangian as a preparation for later sections. In Section 4, 
we prove the Γ-convergence of ε-dependent action functional of general absolutely continu
ous curves on any bounded subset of RI≥0 under the two conditions (FDB) and (UFE). The 
Γ-convergence result consists of the compactness for curves with finite action (see Proposi
tion 4.3), the lower bound estimates for the action functional for any curve that converges weakly 
in L1([0, T ];RI≥0) (see Proposition 4.5), and the upper bound estimate via the construction of a 
strongly convergent recovery sequence (see Proposition 4.6). The resulting effective action func
tional regulates the trajectory staying on the set of fast equilibria ℰfast. In Section 5, we prove the 
convergence of viscosity solutions uε to the state-constraint (HJEε) in Corollary 5.7. Due to the 
degeneracy of Hε in the momentum variable p in some directions, it is necessary to establish the 
coercivity and Lipschitz estimates in a non-degenerate subspace. Due to the lack of uniform coer
civity near the boundary, we also consider state-constraint solutions uε on the domain Ω that has 
a positive distance away from ∂RI+. Based on well-prepared initial data with uniform C1 bounds 
and a vanishing gradient in the direction of fast reactions, we first obtain the uniform Lipschitz 
estimates in time-space for uε separately for fast/slow directions (see Theorem 5.6). This ensures 
the uniform convergence to a limiting solution u∗. In Section 6, we connect the convergence of 
solutions of (HJEε) and the Γ-convergence of the solution representation to finally identify the 
limiting solution u∗(x, t) for x ∈ ℳS and its variational representation via the effective action 
functional (see Proposition 6.1). This limiting characterization proves that u∗ solves the effective 
HJE (1.2).

In summary, we obtain the convergence of (HJEε), without the reversibility assumption for 
the chemical reactions, and thus allowing applications to non-equilibrium biochemical systems. 
The justification of this convergence not only helps the identification of slow manifold and the 
effective RRE dynamics, more rich information comes along including the limiting behavior of 
the fluctuation estimates and the fluctuations for the effective dynamics itself. The developed 
Γ-convergence approach and Hamilton-Jacobi method for characterizing effective non-typical 
dynamics and fluctuation information does not require reversibility or linearity, so we believe it 
can be extended to other stochastic systems.

In previous works, Γ-convergence has been used to derive effective systems in the context of 
fast-slow chemical reaction systems. For gradientflows, Γ-convergence for the functionals that 
define a gradient structure is derived in [22] for linear reaction systems, in [21] for nonlinear 
reversible reaction systems and in [25] for linear reaction-diffusion systems. There, the detailed
balance assumption is crucial to apply gradient flow approaches. The Γ-convergence result from 
Theorem 4.2 is an extension to irreversible reactions under the same assumption (UFE) as in [21] 
and an additional condition (FDB). In terms of large deviations for multiscale chemical reactions, 
the formal WKB expansion approach has been extensively studied and applied in biochemical 
systems, cf. [14,3,5]. Rigorous large deviation results for chemical reaction processes are lim
ited to specific two-scale system [18] or under linear reaction assumptions. Γ-convergence for 
the large-deviation rate functional of both concentration and fluxes is shown in [23] for gen
eral irreversible but linear fast-slow reactions. In terms of singular limit of general HJEs raising 
from optimal control problem with two time scales, there are thorough studies via similar PDE 
approach such as asymptotic expansions or Γ-convergence, cf. [4,1]. However, due to the separa
tion of fast-slow domain variables in HJEs with or without periodic assumptions, those fall under 
homogenization problems, so reviewing such literature goes beyond the scope of our paper.
5 
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The remaining paper is outlined as follows. In Section 2, we review the basic setup and motiva
tions for studying the singular limit of (HJEε). In Section 3, we compute explicitly the fast-slow, 
effective and coarse-grained Hamiltonian/Lagrangian. In Section 4, we prove the Γ-convergence 
of ε-dependent action functional to the effective one. In Section 5, we obtain the convergence 
of the viscosity solution to (HJEε). In Section 6, we obtain the variational representation for the 
limiting viscosity solution and identify the effective HJE.

2. Setup and basic properties for 𝜺-dependent fast-slow chemical reaction system

In this section, we review the basic setup for ε-dependent fast-slow chemical reaction system 
with the associated (RREε) and (HJEε). First, we introduce definitions and properties of fast
slow RRE with conserved quantities. We also introduce the fast-detailed balance assumption and 
provide preliminary propositions on characterization of the effective RRE and the reconstruction 
map. Finally, we derive the HJE using WKB expansion for the chemical master equation.

2.1. Chemical reaction systems

Chemical reactions involving I species Xi , i ∈ ℐ = {1, · · · , I } and R reactions, indexed as 
r ∈ ℛ= {1, · · · ,R}, can be kinematically described as

reaction r ∈ ℛ : 
∑︂

i

γ +
ri Xi

kr
+  −−⇀ 

↽−−
kr

−

∑︂
i

γ −
ri Xi, (2.1)

where the nonnegative integers γ ±
ri ≥ 0 are stoichiometric coefficients and k±

r ≥ 0 are the reaction 
rates for the r-th forward and backward reactions. Throughout the paper we will assume the 
following type of weak-reversibility: ∀r ∈ ℛ we have k+

r = 0 if and only if k−
r = 0. The column 

vector γr := γ −
r −γ +

r := (︁
γ −
ri − γ +

ri

)︁
i=1:I ∈ ZI is called the reaction vector for the r-th reaction, 

counting the net change in molecular numbers for species Xi . For notational convenience, we 
introduce the so-called Wegscheider matrix G ∈RR×I defined by

G ∈ RR×I , Gr,i := γr,i . (2.2)

Let N be the set of natural numbers including zero. In this paper, all vectors X = (Xi)i=1:I ∈
NI and (Ψr)r∈ℛ , (kr )r∈ℛ ∈ RR are column vectors. Let N be the state space for the counting 
process Xi(t), representing the number of each species i = 1, · · · , I in the biochemical reactions. 
With the reaction container size 1/h ≫ 1, the process Xh

i (t) = hXi(t) can be modeled as the 
random time-changed Poisson representation for chemical reactions (see [17,2]):

Xh(t) = Xh(0) +
∑︂
r∈ℛ

γrh

(︄
Y+

r

⎛⎝1 
h

t∫︂
0 

Ψ+
r (Xh(s)) ds

⎞⎠− Y−
r

⎛⎝1 
h

t∫︂
0 

Ψ−
r (Xh(s)) ds

⎞⎠)︄
. (2.3)

Here, for the r-th reaction channel, Y±
r (t) are i.i.d. unit-rate Poisson processes, and Ψ±

r (Xh) is 
the intensity function. We will use the common form for the intensity function Ψ±

r (Xh) that is 
given by the macroscopic law of mass action (LMA):
6 
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Ψ±
r (x⃗) = k±

r

I∏︂
i=1 

(xi)
γ ±
ri . (2.4)

Macroscopically, the change of concentration can be described by the so-called reaction-rate 
equation (RRE), given by

ẋ(t) = R(x(t)) :=
∑︂
r∈ℛ

(︁
Ψ+

r (x) − Ψ−
r (x)

)︁
γr , Ψ±

r (x) = k±
r

∏︂
i

x
γ

±,r
i

i ,

where the natural state space of concentrations is given by C := RI≥0 := {x ∈RI ; xi ≥ 0 for all i}
as the largest living space for x. We also recall RI+ = {x ∈RI ; xi > 0 for all i}.

Although the (RRE) is not our primary objective of investigations, we collect here some prop
erties, which will also be important later. Important quantities that help to analyze the (RRE) 
are the so-called conserved quantities q ∈ RI such that q ∈ Γ⊥ = {︁

q ∈ RI : ∀γ ∈ Γ : q · γ = 0
}︁
, 

where we define the stoichiometric subspace Γ := span {γr : r ∈ℛ}. (Note that we do not assume 
that they are linearly independent.) In particular, for the RRE, q · x(t) is not changed along the 
evolution (which also clarifies their name). Fixing a basis q1, . . . , qm of Γ⊥, we define the matrix 
Q ∈ Rm×I by its adjoint QT = (q1, . . . , qm) ∈ RI×m. By construction, QT is injective, Q is 
surjective and ker(Q) = Γ.

2.2. Fast-slow RRE and conserved quantities

As explained in the introduction, we assume the rate kr for all reactions appear to be only two 
scales. That is, the fast reaction has a 1/ε order while the slow reaction has order O(1). To be 
more precise, we split

ℛ = ℛslow ∪ ℛfast

such that

k±
r = k±

r (ε) =
{︄

1
ε
k±
r , r ∈ℛfast

k±
r , r ∈ℛslow.

Then the fast-slow RRE becomes (RREε), i.e.,

ẋ(t) =Rslow(x(t)) + 1

ε
Rfast(x(t))

:=
∑︂

r∈ℛslow

(︁
Ψ+

r (x) − Ψ−
r (x)

)︁
γr + 1

ε

∑︂
r∈ℛfast

(︁
Ψ+

r (x) − Ψ−
r (x)

)︁
γr . (2.5)

Similar to the general system, we define the fast stoichiometric subspace Γfast = span {γr : 
r ∈ ℛfast}. Then, we have Γ⊥ ⊂ Γ⊥

fast, and mfast = dimΓ⊥
fast ≥ m = dimΓ⊥. Extending the basis 

q1, . . . , qm of Γ⊥ to a basis q1, . . . , qmfast  of Γ⊥
fast, we define the conservation matrix Qfast :RI →

Rmfast by QT = (q1, . . . , qm ) ∈RI×mfast . In particular, we have
fast fast

7 
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kerQfast = Γfast, rangeQT
fast = Γ⊥

fast.

Moreover, we set

Q := {︁
Qfastx ∈Rmfast : x ∈ C

}︁
. (2.6)

In the following we will call, elements q ∈ Q fast conserved quantities because they are the slow 
dynamic variables and do not change for the fast part of the evolution. For future reference, we 
also define the fast Wegscheider matrix for the fast conserved quantities

Gfast ∈ RR×mfast, Gfast = GQT
fast. (2.7)

Heuristically, for small times the fast part Rfast(c(t)) of (RREε) will dominate, while for larger 
times (t > ε) the slow reactions drive the evolution and the fast parts are in equilibrium. Thus we 
define the set of fast equilibria that defines later the slow manifold of the evolution:

ℰfast := {︁
x ∈ C : ∀r ∈ℛfast : Ψ+

r (x) = Ψ−
r (x)

}︁
.

For consistency, we cite the following classical convergence result, which goes back to D. Bothe 
[6].

Theorem 2.1 ([6]). Let xε be the solution of the fast-slow (RREε) with initial values xε(0) =
xε

0 > 0. Assume that xε
0 → x∗

0 > 0. Then we have xε → x∗ ∈ C([0, T ],RI+), where x∗ solves the 
following effective RRE: we have x∗(t) ∈ ℰfast for t > 0 and its evolution is described by the slow 
reactions only and a Lagrange parameter that forces the evolution to stay on that set, i.e.

ẋ∗ = Rslow(x∗(t)) + λ(t), x∗(t) ∈ ℰfast, λ(t) ∈ Γfast, x∗(0) = x∗
0 . (2.8)

This theorem characterizes the effective evolution. Moreover, we will see in Proposition 2.6
that the effective evolution can also be described in other ways by using projections, or coarse
grained variables.

2.3. Assumptions on the fast reaction part and the reconstruction map

Instead of analyzing the (RREε), we are going to investigate the fluctuations around the typical 
path. For that we need two assumptions on the reaction system. The first assumption states that 
the fast reaction part x′ = Rfast(x) is a detailed balanced reaction system. The second assumption 
is a condition on the fast equilibria ℰfast, which allows a resolution of ℰfast by the fast conserved 
quantities q ∈ Q.

Assumption 2.2 (Fast-detailed balance assumption). Suppose there is a positive equilibrium 
state x∗

s ∈ RI+, such that the fast reactions are in detailed balance, i.e.

∃x∗
s ∈ RI+ such that Ψ+

r (x∗
s ) = Ψ−

r (x∗
s ), ∀r ∈ ℛfast. (FDB)
8 
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This assumption implies that the fast reaction part x′ = Rfast(x) is a detailed-balanced reaction 
system with equilibrium x∗

s . Note that x∗
s may not be an equilibrium of the whole system.

A direct calculation shows that the fast detailed balance condition (FDB), can be rewritten in 
the following equivalent ways, which will be useful later. It is also convenient to define the subset 
of positive fast equilibria by

ℰfast,+ := ℰfast ∩RI+.

Lemma 2.3. Suppose (FDB) holds. Then

(1) ∀r ∈ ℛfast : Ψ+
r (x∗

s ) = k+
r

∏︁
i x

∗γ
+,r
i

s,i = k−
r

∏︁
i x

∗γ
−,r
i

s,i = Ψ−
r (x∗

s ) and log
(︁
k+
r /k−

r

)︁ = γr ·
logx∗

s .
(2) ∀r ∈ℛfast,∀x ∈ RI+ : γr · log(x/x∗

s ) = log(Ψ−
r (x)/Ψ+

r (x)).

In particular, we have the following equivalent characterization of the set of fast equilibria:

x ∈ ℰfast,+ ⇔ ∀r ∈ℛfast : γr · log(x/x∗
s ) = 0 ⇔ Dℋ(x|x∗

s ) ∈ ΓT
fast, (2.9)

where ℋ(x|x∗
s ) is the relative entropy, i.e., ℋ(x|y) :=∑︁I

i=1 xi log(xi/yi) − xi + yi .

Moreover, we impose the following non-trivial structural assumption on the set of fast equilib
ria ℰfast. The same assumption has been stated in [21] for the Γ-convergence result for fast-slow 
detailed balance chemical reaction systems. Under Assumption 2.2, it adapts to our situation as 
well.

Assumption 2.4 (Unique fast equilibrium condition). For all q ∈ Q = {Qfastx|x ∈ C} there is 
exactly one equilibrium of x′ = Rfast(x) in the invariant subset {x ∈ C|Qfastx = q}, i.e.

∀q ∈ Q : ♯({x ∈ C|Qfastx = q} ∩ ℰfast) = 1. (UFE)

By R : Q → C we denote the mapping, s.t. {R(q)} = {x ∈ C|Qfastx = q} ∩ ℰfast.

The map R will be called reconstruction map because it resolves the fast equilibria ℰfast, where 
the slow evolution takes place, in terms of the fast conserved quantities of the evolution.

In addition (as in [21]), we impose the following positivity assumption on R:

∃q̄ ∈ Q : ∀θ ∈]0,1],∀q ∈ Q,∀i ∈ ℐ : R(q + θ q̄)i > 0 and R(q + θ q̄)i ≥ R(q)i . (2.10)

We note that the positivity assumption is only needed in one technical step, namely for the 
construction of the recovery sequence for trajectories ``touching'' the boundary ∂C. (Note, con
sidering the setting for the Hamilton-Jacobi equation in Section 5, where the underlying domain 
Ω has a positive distance to the boundary, this assumption is not needed.) We also expect that 
with a more careful analysis in Proposition 4.6 the positivity assumption can be discarded.

The (UFE) stressed the difference between the typical path and the fluctuations. The typical 
path starting from a positive concentration vector converges in time to the minimizer of the 
relative entropy ℋ(·|x∗) in the invariant set {x ∈ C|Qfastx = q}. Other possible equilibria are on 
s

9 
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the (repelling) boundary ∂C, which the (UFE) excludes. The (UFE) really means that im(R) =
ℰfast. The necessity of the (UFE) for our result comes from the fact that general fluctuations do 
not satisfy the maximum principle. Note that the (UFE) fails for autocatalytic reactions. The loss 
of compactness in that situation is discussed in [21, Rem. 3.10].

The reconstruction map R has been already introduced and analyzed in [21]. Here, we only 
summarize the important properties and refer to [21] for more details and the proofs.

Proposition 2.5 ([21]). Let (FDB) and (UFE) be satisfied. Then:

(1) The function R : Q → C is continuous, and R : intQ → intC is analytic.
(2) We have QfastR(q) = q and im(R) = ℰfast.
(3) For all q ∈ intQ we have QfastDR(q) = Imfast , and QT

fastDR(q)T is a projection on 
im(QT

fast) = Γ⊥
fast.

(4) For all x ∈ ℰfast,+ the tangent space of the manifold of equilibria is given by Txℰfast =
H(x)−1Γ⊥

fast, where H(x) := D2ℋ(x|x∗
s ) = diag(1/x1, . . . ,1/xI ).

(5) Define the projection P (x) by imP (x) = Γfast, kerP (x) = H−1(x)Γ⊥
fast. Then, we have the 

identity (I − P (R(q))) = DR(q)Qfast and, clearly, the operator P (x) is uniformly bounded 
on compact subsets of K ⊂ RI+.

Using the reconstruction map R : Q → C, we can now equivalently describe the effective 
evolution in Theorem 2.1.

Proposition 2.6. Let x(0) ∈ ℰfast,+. Then the effective dynamics (2.8) from Theorem 2.1 can be 
equivalently described in two additional ways:

(1) Projected dynamics: ẋ = (I − P (x))Rslow(x).
(2) Coarse-grained dynamics: q̇(t) = QfastRslow(R(q(t))).

2.4. Fast-slow HJE for non-typical paths resulted from the large deviation principle

In order to study the large fluctuations in the chemical reaction process (2.3) that deviate from 
the typical path described by RRE, the WKB expansion in the chemical master equation (Kol
mogorov forward equation) is a commonly used method, cf. [16,10,13,24]. The time marginal 
law of Xh(t), denoted as ph(xi, t), for xi in a discrete domain, satisfies forward equation [2,12]

d 
dt

ph(xi, t) = 1 
h

∑︂
r∈ℛ

(︁
Ψ+

r (xi − γrh)ph(xi − γrh, t) − Ψ−
r (xi)ph(xi, t)

)︁
+ 1 

h

∑︂
r∈ℛ

(︁
Ψ−

r (xi + γrh)ph(xi + γrh, t) − Ψ+
r (xi)ph(xi, t)

)︁
.

(2.11)

The exponential tilt for the probability density ph(xi) = e− uh(xi )

h provides a Hamiltonian view
point for studying the non-typical paths of the fast-slow dynamics, which happens with exponen
tially small probability compared with the typical path described RRE, cf. [10,13,11]. Using the 
exponential tilt, ui satisfies a discrete HJE (nonlinear ODE)
10 
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∂tuh(xi, t) +
∑︂
r∈ℛ

[︁
Ψ+

r (xi − γrh)e
uh(xi ,t)−uh(xi−γr h,t)

h − Ψ−
r (xi)

]︁
+
∑︂
r∈ℛ

[︁
Ψ−

r (xi + γrh)e
uh(xi ,t)−uh(xi+γr h,t)

h − Ψ+
r (xi)

]︁= 0.

Formally, as h → 0, Taylor’s expansion of uh with respect to h leads to the following HJE

∂tu(x, t) +
∑︂
r∈ℛ

(︂
Ψ+

r (x)
(︂

eγr ·∇u(x,t) − 1
)︂

+ Ψ−
r (x)

(︂
e−γr ·∇u(x,t) − 1

)︂)︂
= 0. (2.12)

The rigorous proof of the large deviation principle using the convergence of discrete nonlinear 
semigroup to the continuous one can be done through the WKB expansion in the backward 
equation for process Xh and the convergence of the resulted monotone scheme for the first order 
continuous HJE, which we refer to [12].

In this paper we start from the continuous HJE (2.12) with fast-slow multiscale intensity 
functions: Ψ±

r with r ∈ ℛslow and Ψ±
r,ε = 1

ε
Ψ±

r with r ∈ ℛfast. Then the Hamiltonian in (2.12)
becomes Hε in (1.1). To study the limiting behaviors and the variational representation, we con
sider chemical reactions restricted in a bounded domain Ω, which satisfies Ω ⊂ RI+. Then the 
associated HJE on a bounded domain with state-constraint boundary condition becomes (HJEε). 
The initial condition uε(x,0) = uε

0(x) will be specified later. The definition of viscosity solution 
to (HJEε) will be given in Definition 5.2.

3. Fast-slow, effective, and coarse-grained Hamiltonian and Lagrangian

Before we study the limit of (HJEε), we first recall the functionals, i.e. the Hamiltonian and 
the Lagrangian from the introduction, see (1.1). In particular, we state explicitly the fast-slow 
Hamiltonian Hε and Lagrangian Lε for the fast-slow chemical reaction system, followed by the 
effective Hamiltonian Heff and Lagrangian Leff, which will be a part of the Γ-convergence result 
in Section 4. Finally, we define coarse-grained functionals H and L, which will be the expression 
of the effective functionals in coarse-grained variables. Note that throughout the section the func
tionals are defined on subsets of the Euclidean space and the canonical inner product is denoted 
by x · p =∑︁

i xipi .

3.1. Fast-slow action Hamiltonian and Lagrangian

Throughout this section, ε > 0 is fixed. Recall from (1.1) the fast-slow Hamiltonian Hε :
RI × RI → R. By Legendre transform (see Lemma 3.1 below), the fast-slow Lagrangian is 
given by

Lε(x, v) = inf 
v=GT J

∑︂
r∈ℛ

S(Jr |Ψ+
r,ε(x),Ψ−

r,ε(x)), (3.1)

where we have used the Wegscheider matrix G ∈RR×I from (2.2). Note that we have 
(︁
GT J

)︁
i
=∑︁

r γr,iJr , and (Gp)r = γr · p. The equation

v = GT J
11 
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connects the change of rate v with fluxes J by a gradient-type operator G, and, in the following, 
will be called continuity equation. Above, we define for α,β > 0 the function

S(J |α,β) :=√︁
αβ · 𝒞

(︃
J√
αβ

)︃
− J

1

2
log(α/β) +

(︂√
α −√︁

β
)︂2

,

as the Legendre transform of the function (α,β,p) ↦→ S∗
α,β(p) := α (ep − 1)+β

(︁
e−p − 1

)︁
with 

respect to the variable p ∈ R. Here 𝒞 is the Legendre transform of the cosh-function 𝒞∗(p) =
2(cosh(p) − 1). In Proposition 3.2, properties of the functions S and S∗ will be summarized. 
Before that, we first show that indeed the Hamiltonian Hε and the Lagrangian Lε are dual to 
each other.

Lemma 3.1. For all x ∈ C, v ∈ RI , we have Hε(x, ·)∗(v) = supp (p · v − Hε(x,p)) = Lε(x, v).

Note, that in particular, we have Lε(x, v) = +∞ if v / ∈ Γ. Recalling the definition of the 
matrix Q of conserved quantities from Section 2.1, this means that for a trajectory t ↦→ x(t) with 
bounded Lε(x(t), ẋ(t)) we necessarily have that Qẋ = 0.

Proof. For simplicity, we neglect the explicit ε-dependence in the reaction intensities Ψ±
r,ε. We 

compute the Legendre transform of Lε from (3.1) and obtain

L∗
ε(x,p) =

= sup
v

{︄
v · p − inf 

v=GT J

∑︂
r∈ℛ

S(Jr |Ψ+
r (x),Ψ−

r (x))

}︄

= sup 
v,J :v=GT J

{︄
v · p −

∑︂
r∈ℛ

S(Jr |Ψ+
r (x),Ψ−

r (x))

}︄

= sup
J

{︄
GT J · p −

∑︂
r∈ℛ

S(Jr |Ψ+
r (x),Ψ−

r (x))

}︄
= sup

J

{︄
J ·Gp −

∑︂
r∈ℛ

S(Jr |Ψ+
r (x),Ψ−

r (x))

}︄

= sup
J

{︄∑︂
r

Jr (Gp)r −
∑︂
r∈ℛ

S(Jr |Ψ+
r (x),Ψ−

r (x))

}︄

=
∑︂
r∈ℛ

S∗
Ψ+

r (x),Ψ−
r (x)

(γr · p) = Hε(x,p). □

In the later sections we need some properties of the function S, which will be summarized 
and proved in the following proposition.

Proposition 3.2. Let [0,∞[×[0,∞[×R ∋ (α,β,p) ↦→ S∗
α,β(p) := α (ep − 1) + β

(︁
e−p − 1

)︁
, 

and define its Legendre transform by S(J |α,β) = supp∈R
(︂
p · J − S∗

α,β(p)
)︂

. The function S
has the following properties:

(1) For all α,β ≥ 0, J ∈R, we have S(J |α,β) ≥ 0 and S(J |α,β) = S(−J |β,α).
12 
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(2) For α,β > 0, we have the following equivalent characterizations

S(J |α,β) =√︁
αβ · 𝒞

(︃
J√
αβ

)︃
− J

1

2
log(α/β) +

(︂√
α −√︁

β
)︂2

= inf 
J=u−w

ℋ(u|α) +ℋ(w|β),

where 𝒞 is the Legendre transform of the cosh-function 𝒞∗(p) = 2(cosh(p) − 1) and ℋ is 
the relative entropy. In particular, we have

S(J |α,β) ≥ −J
1

2
log(α/β) +

(︂√
α −√︁

β
)︂2

.

(3) For M > 0 satisfying α,β ≤ M , we have that S(J |α,β) ≥ M𝒞 (J/M) − 2M .

Proof. The first two claims follow directly from the definition by the Legendre transform. For 
the third claim, we observe that

S∗
α,β(p) = α(ep − 1) + β(e−p − 1) ≤ M

(︁
ep + e−p

)︁≤ 2M cosh(p) = M(𝒞∗(p) + 2).

Hence,

S(J |α,β) = sup
p

{︂
p · J − S∗

α,β(p)
}︂

≥ sup
p

{︁
p · J − M(𝒞∗(p) + 2)

}︁≥ M sup
p

{︃
p · J

M
− 𝒞∗(p)

}︃
− 2M

= M𝒞 (J/M) − 2M. □
3.2. Effective Lagrangian and Hamiltonian

As we will see from the Γ-convergence result (Theorem 4.2), the effective Lagrangian Leff is 
restricted to the slow reactions and takes into account the set of fast equilibria ℰfast. It is defined 
as

Leff(x, v) := inf
J

⎧⎨⎩ ∑︂
r∈ℛslow

S(Jr |Ψ+
r (x),Ψ−

r (x)) : Qfastv = GT
fastJ

⎫⎬⎭ (3.2)

for x ∈ ℰfast, where we have used the fast Wegscheider matrix Gfast = GQT
fast from (2.7); and 

Leff(x, v) := +∞ if x / ∈ ℰfast. Later we will restrict the domain of definition to x ∈ ℰfast, see 
Section 4. Note that Leff contains the slow part of the ε-dependent Lagrangian without its fast
part. However the continuity equation is now contracted through the fast-conservation matrix 
Qfast.

The explicit expression of effective Hamiltonian Heff is computed in the next lemma.
13 
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Lemma 3.3. For x ∈ ℰfast, we have Leff(x, ·)∗(p) =: Heff(x,p),

Heff(x,p) =
∑︂

r∈ℛslow

S∗
Ψ+

r (x),Ψ−
r (x)

(γr · p) + χΓ⊥
fast

(p), (3.3)

where the characteristic function of convex analysis p ↦→ χA(p) is defined as 0, if p ∈ A and +∞
otherwise. In particular, we have that Heff(x,p) = ∞ if p / ∈ Γ⊥

fast = rangeQT
fast. Moreover, for 

all x ∈ ℰfast and p ∈ Γ⊥
fast the Legendre transform Heff(x,p) is attained by taking the supremum 

over v ∈ Txℰfast = Ker(P (x)), i.e.

Heff(x,p) = sup 
v∈Txℰfast

{p · v − Leff(x, v)},

where the projection is defined by Ker(P (x)) = Txℰfast, range(P (x)) = Γfast (see Proposi
tion 2.5).

Proof. Let us fix x ∈ ℰfast. We compute the Legendre transform of Leff and show that it is given 
by Heff. For this we observe first that

L∗
eff(x,p) = sup

v
{v · p − Leff(x, v)} = sup 

v,J :Qfastv=QfastGT J

⎧⎨⎩v · p −
∑︂

r∈ℛslow

S(Jr |Ψ+
r (x),Ψ−

r (x))

⎫⎬⎭
≥ sup 

v:Qfastv=0
v · p = χΓ⊥

fast
(p).

For p = QT
fastp, a direct calculation shows that

(Leff(x, ·))∗ (p = QT
fastp) = sup

v

⎧⎨⎩v · QT
fastp − inf 

J :Qfastv=QfastGT J

⎧⎨⎩ ∑︂
r∈ℛslow

S(Jr |Ψ+
r (x),Ψ−

r (x))

⎫⎬⎭
⎫⎬⎭

= sup 
v:Qfastv=QfastGT J

⎧⎨⎩Qfastv · p −
∑︂

r∈ℛslow

S(Jr |Ψ+
r (x),Ψ−

r (x))

⎫⎬⎭ .

The right-hand side depends on v only via Qfastv. However, using the projection P (x), we 
decompose v = (I − P (x))v + P (x)v, where (I − P (x))v ∈ Txℰfast and observe Qfastv =
Qfast(I − P (x))v. Hence, it suffices to compute the supremum only for v ∈ Txℰfast. Comput
ing further we get

(Leff(x, ·))∗ (p = QT
fastp)

= sup
J

⎧⎨⎩QfastG
T J · p −

∑︂
r∈ℛslow

S(Jr |Ψr
+(x),Ψr

−(x))

⎫⎬⎭
= sup

J

⎧⎨⎩ ∑︂
Jr (Gp)r +

∑︂
Jr (Gp)r −

∑︂
S(Jr |Ψ+

r (x),Ψ−
r (x))

⎫⎬⎭

r∈ℛslow r∈ℛfast r∈ℛslow

14 
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=
∑︂

r∈ℛslow

S∗
Ψ+

r (x),Ψ−
r (x)

(γr · p) = Heff(x,p).

This proves the claim. □
3.3. Coarse-grained Hamiltonian and Lagrangian

As we have seen the effective Lagrangian and Hamiltonian both contain constraints. These 
constraints can be resolved by using coarse-grained variables. For this, recall the reconstruction 
map R from (UFE).

The effective Lagrangian Leff is finite if evaluated at x = R(q) ∈ ℰfast. Moreover for the con
straint in the Hamiltonian, we observe that p ∈ Γ⊥

fast is equivalent to p ∈ range(QT
fast), i.e. there 

is p ∈ Rmfast such that p = QT
fastp. Hence, we have

Heff(x,p = QT
fastp) = Heff(R(q),QT

fastp) =
∑︂

r∈ℛslow

S∗
Ψ+

r (R(q)),Ψ−
r (R(q))

(γr · QT
fastp) =

=
∑︂

r∈ℛslow

S∗
Ψ+

r (R(q)),Ψ−
r (R(q))

(Qfastγr · p) =: H(q,p), (3.4)

where we call H = H(q,p) as the coarse-grained Hamiltonian on Rmfast × Rmfast . This Hamilto
nian corresponds to a RRE with reaction intensities Ψ±

r ◦ R and stoichiometric vectors Qfastγr ∈
Rmfast , meaning that it contains linear stoichiometric vectors, however mass-action law might be 
violated (as already observed in [21]). The induced RRE of that Hamiltonian is then the coarse
grained evolution equation

q̇ = QfastRslow(R(q(t))),

which we have seen from Proposition 2.1.
For x = R(q) ∈ ℰfast, the coarse-grained Lagrangian is then defined by the following contrac

tion:

L(q, v) := inf 
v:v=Qfastv

Leff(R(q), v) (3.5)

= inf 
v=GT

fastJ

∑︂
r∈ℛslow

S(Jr |Ψ+
r (R(q)),Ψ−

r (R(q))). (3.6)

Indeed, computing the Legendre transform of the right-hand side, we get

sup
v 

{v · p − inf 
v:Qfastv=v

Leff(x, v)} = sup 
v,v:Qfastv=v

{v · p − Leff(x, v)}

= sup
v

{Qfastv · p − Leff(x, v)} = sup
v

{v · QT
fastp − Leff(x, v)} = Heff(q,QT

fastp) = H(q,p),

which shows that the convex and continuous functions H and L are both Legendre duals.
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4. 𝚪-convergence result of fast-slow action functional 𝓛𝜺

In this section we state and prove the Γ-convergence result of fast-slow action functional ℒε, 
which will later be also applied to identify the limit of the HJE. To do so, we consider the full 
domain C (which is convex and closed) and we fix a time-interval [0, T ], T > 0. Moreover, we 
are interested in trajectories x : [0, T ] ↦→ x(t) with final point x(T ) = x ∈ C, fixed throughout the 
section. To fix the functional analytic setting, we introduce the function space

ACx([0, T ],C) := {x ∈ AC([0, T ],C) : x(T ) = x}.

The ε-dependent Lagrangian Lε defines the fast-slow action functional by

ℒε(x) =
{︄∫︁ T

0 Lε(x(t), ẋ(t)) dt, x ∈ ACx([0, T ],C),

+∞, otherwise.
(4.1)

Later we will rely on the flux representation of the L1-velocity ẋ(t) = GT J = ∑︁
r Jr (t)γr

represented by general measurable fluxes J : [0, T ] → RR . We first define our notion of Γ
convergence. Note that we restrict the curves to be bounded in accordance to Section 5, where 
we consider a bounded domain Ω ⊂ RI .

Definition 4.1. We say ℒε converges to ℒeff in the sense of (bounded L1-)Mosco-convergence, 

denoted as ℒε
M −→ ℒeff, if (i) a liminf-estimate holds for all weakly-converging sequences:

∀xε ⇀ x in L1([0, T ],C), sup
ε>0 

∥xε∥L∞([0,T ]) < ∞ : lim inf
ε→0 

ℒε(x
ε) ≥ ℒeff(x);

and (ii) there exists a recovery sequence converging in L1([0, T ],C):

∀x ∈ L1([0, T ],C), ∃xε→ x in L1([0, T ],C), sup
ε>0 

∥xε∥L∞([0,T ]) < ∞ : lim 
ε→0

ℒε(x
ε) = ℒeff(x).

We remark that the convergence of the recovery sequence can be improved to C([0, T ],C)

(see Proposition 4.6.)

Theorem 4.2 (Γ-convergence of action functional). Assume that both conditions (FDB) and 

(UFE) hold. Then, we have the Mosco-convergence ℒε
M −→ ℒeff, as defined in Definition 4.1, 

where

ℒeff(x) :=
{︄∫︁ T

0 Leff(x(t), ẋ(t))dt, x ∈ C([0, T ],C), Qfastx ∈ W1,1([0, T ],Rmfast), x(t) ∈ ℰfast,

+∞ otherwise,

(4.2)
and the effective Lagrangian Leff is defined by (3.2). In particular, continuous curves x with finite 
action ℒeff(x) < ∞ satisfy x(t) ∈ ℰfast for all t ∈ [0, T ].
16 
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Note that although the topology is given by L1([0, T ],C) the functionals ℒε and ℒeff are only 
finite on continuous functions such that the point evaluation x(T ) = x makes sense. As usual 
the Γ-convergence is done in the following three steps: first showing the necessary compactness, 
then the liminf-estimate, finally constructing the recovery sequence.

Proposition 4.3 (Compactness). Let a sequence (xε)ε>0, xε ∈ ACx([0, T ],C) satisfying ℒε(xε) ≤
C and |xε(t)| ≤ C for some constant C > 0 be given. Moreover, assume the (FDB) and the (UFE)
conditions. Then there exists a function x∗ ∈ L1([0, T ],C) with the following properties:

(1) (Qfastx∗) ∈ W1,1([0, T ],Rmfast) and x∗(t) ∈ ℰfast for a.e. t ∈ [0, T ];
(2) xε → x∗ in any Lp([0, T ],RI ), p ∈ [1,∞[;
(3) x∗(t) = R(Qfastx∗(t)) for a.e. t ∈ [0, T ], which implies that x∗ ∈ W1,1([0, T ],Rmfast), i.e. x

has an absolutely continuous representative.

Before we prove the proposition, we first need the following elementary estimate.

Lemma 4.4. Let x ∈ C be arbitrary, and let Ψ±(x) = k±xγ ±
with γ ± ∈ NI and γ = γ − − γ +. 

Then for all J ∈ R it holds the pointwise estimate

Jγ · log(x/x∗
s ) ≤ S(J |Ψ+,Ψ−) + k+

{︃
xγ −

(x∗
s )−γ − xγ +

}︃
+ k−

{︃
xγ +

(x∗
s )γ − xγ −

}︃
, (4.3)

where the right-hand side is properly defined up to the boundary x ∈ ∂C.

Proof. By evaluating the Legendre transform of S at p = log

(︃
(x/x∗

s )γ
−−γ +

)︃
, we get that

S(J |Ψ+,Ψ−) ≥ J log

(︃
(x/x∗

s )γ
−−γ +

)︃
− Ψ+((x/x∗

s )γ
−−γ + − 1) − Ψ−((x/x∗

s )γ
+−γ − − 1).

Using that Ψ+(x) = k+xγ +
, Ψ−(x) = k−xγ −

and γ = γ − − γ +, we hence get an inequality of 
the form

Jγ · log(x/x∗
s ) ≤ S(J |Ψ+,Ψ−) + k+xγ +

{︃
xγ −−γ +

(x∗
s )−γ − 1

}︃
+ k−xγ −

{︃
xγ +−γ −

(x∗
s )γ − 1

}︃
≤ S(J |Ψ+,Ψ−) + k+

{︃
xγ −

(x∗
s )−γ − xγ +

}︃
+ k−

{︃
xγ +

(x∗
s )γ − xγ −

}︃
. □

Proof of Proposition 4.3. The proof is performed in several steps. To derive the time regularity, 
we use the explicit formula Lε(x, v) = infv=GT J

∑︁
r∈ℛ S(Jr |Ψ+

r (x),Ψ−
r (x)). Hence, we may 

assume the existence of fluxes J ε
r : [0, T ] → R that are measurable, such that ẋε(t) = GT J ε(t)

holds weakly in time and we have by the non-negativity of S that

∀r ∈ ℛ : 
T∫︂

S
(︁
J ε

r (t)|Ψ+
r,ε(x

ε(t)),Ψ−
r,ε(x

ε(t))
)︁
dt ≤ C. (4.4)
0 

17 
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Step 1: Since by assumptions, the sequence xε is uniformly bounded, we have a limit x∗ ∈
L∞([0, T ],C) such that there exists a subsequence (not relabeled) xε ∗ 

⇀ x∗ in L∞([0, T ],C) as 
ε → 0. Note that a priori the limit x∗ has no regularity. 
Step 2: Compactness of slow fluxes: 
Let r ∈ ℛslow, and let M := max

{︁
Ψ±

r (x) : r ∈ℛslow, x ≤ C
}︁

< ∞. By Proposition 3.2, we have 

C ≥ ∫︁ T

0

(︂
M𝒞

(︂
J ε
r

M

)︂
− 2M

)︂
dt which implies that 

{︂
J ε
r

M

}︂
ε>0

is uniformly bounded in the Orlicz 

space L𝒞([0, T ]). Because it is a Banach space we also get that

J ε
r is uniformly bounded in L𝒞([0, T ]), (4.5)

and hence we get weak compactness

J ε
r ⇀ J ∗

r in L1([0, T ]) for all r ∈ ℛslow. (4.6)

Step 3: By the continuity equation, we get

Qfastẋ
ε = Qfast

∑︂
r∈ℛ

J ε
r γr = Qfast

∑︂
r∈ℛslow

J ε
r γr ,

because Γfast = kerQfast. Hence, we conclude that (Qfastẋε) ∈ L𝒞([0, T ],Rmfast), which implies 
by the Arzela-Ascoli theorem uniform convergence on [0, T ] of Qfastxε =: qε to a continuous 
curve q∗ := Qfastx∗. Here we have used that the terminal point x(T ) is fixed. In particular, we 
also have strong convergence Qfastxε → q∗ in L1([0, T ],Rmfast). 
Step 4: Next, we show that x∗(t) ∈ ℰfast for almost all t ∈ [0, T ]. For this we exploit the specific 
form of S and rely on (FDB). First, we observe that by defining x̃ε(t) = (xε ∗ ψε)(t), where ψε

is a mollifier in time (i.e. on [0, T ] ⊂ R) approximating the identity as ε → 0, the same a priori 
estimate (4.4) holds true for x̃ε , and thus we may assume that xε is strictly positive for any ε > 0
(but of course not uniformly in ε). Using (5.1) and Proposition 3.2, we have for all r ∈ ℛfast a 
bound on

T∫︂
0 

S(J ε
r |Ψ+

r,ε(x
ε),Ψ−

r,ε(x
ε))dt

≥
T∫︂

0 

−J ε
r

1

2
log(Ψ+

r,ε(x
ε)/Ψ−

r,ε(x
ε)) + 1

ε

(︃√︂
Ψ+

r,ε(xε) −
√︂

Ψ−
r,ε(xε)

)︃2

dt

=
T∫︂

0 

J ε
r

2 
γr · log(xε/x∗

s ) + 1

ε

(︃√︂
Ψ+

r,ε(xε) −
√︂

Ψ−
r,ε(xε)

)︃2

dt,

where we have used the (FDB) and Lemma 2.3 in the last step.
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Summing over all r ∈ℛfast, we get the uniform bound

1

2

T∫︂
0 

∑︂
r∈ℛfast

J ε
r γr · log(xε/x∗

s )dt + 1

ε

∑︂
r∈ℛfast

T∫︂
0 

(︃√︂
Ψ+

r (xε) −
√︂

Ψ−
r (xε)

)︃2

dt

≤
∑︂

r∈ℛfast

T∫︂
0 

S(J ε
r |Ψ+

r,ε(x
ε),Ψ−

r,ε(x
ε))dt,

or, equivalently, that

1

ε

∑︂
r∈ℛfast

T∫︂
0 

(︃√︂
Ψ+

r (xε) −
√︂

Ψ−
r (xε)

)︃2

dt

≤
∑︂

r∈ℛfast

T∫︂
0 

S(J ε
r |Ψ+

r,ε(x
ε),Ψ−

r,ε(x
ε))dt − 1

2

T∫︂
0 

∑︂
r∈ℛfast

J ε
r γr · log(xε/x∗

s )dt.

We are now deriving an ε-uniform bound for the right-hand side. Indeed, the bound on the first 
term follows from the a priori bound on the action functional (4.4). For the second term, we use 
the continuity equation, and get

−
T∫︂

0 

∑︂
r∈ℛfast

J ε
r γr · log(xε/x∗

s )dt = −
T∫︂

0 

⎛⎝ẋε −
∑︂

r∈ℛslow

J ε
r γr

⎞⎠ · log(xε/x∗
s )dt

= −
T∫︂

0 

ẋε · log(xε/x∗
s )dt +

T∫︂
0 

∑︂
r∈ℛslow

J ε
r γr · log(xε/x∗

s )dt,

which we both estimate as follows. We have

T∫︂
0 

ẋε · log(xε/x∗
s )dt =

T∫︂
0 

d 
dt
ℋ(xε(t)|x∗

s )dt = ℋ(xε(T )|x∗
s ) −ℋ(xε(0)|x∗

s ),

which is uniformly bounded in ε → 0 (also up to the boundary of C). Moreover, exploiting 
Lemma 4.4, we get the bound

T∫︂
0 

∑︂
r∈ℛslow

J ε
r γr · log(xε/x∗

s )dt

≤
∑︂

r∈ℛslow

T∫︂
0 

S(J ε
r |Ψ+

r ,Ψ−
r ) + k+

r

{︃
(xε)γ

−
r (x∗

s )−γr − (xε)γ
+
r

}︃
+ k−

r

{︃
(xε)γ

+
r (x∗

s )γr − (xε)γ
−
r

}︃
dt,
19 
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whose right-hand side is again bounded by the a priori estimate (4.4) and the uniform bound 
|xε(t)| ≤ C. 
Hence, there exists a constant C̃ > 0 such that

1

ε

∑︂
r∈ℛfast

T∫︂
0 

(︃√︂
Ψ+

r (xε) −
√︂

Ψ−
r (xε)

)︃2

dt ≤ C̃.

Since the integrand

Ffast(x
ε(t)) :=

∑︂
r∈ℛfast

(︃√︂
Ψ+

r (xε(t)) −
√︂

Ψ−
r (xε(t))

)︃2

is non-negative, in the following denoted by fε = Ffast(xε(t)), we conclude that the bounded 
sequence fε converges (up to relabeling) to zero a.e. in [0, T ]. Since Ffast is continuous, we con
clude that Ffast(x∗) = 0 a.e., which means that x∗(t) ∈ ℰfast a.e. in t ∈ [0, T ]. 
Step 5: To get full compactness and the desired continuity for x∗, we now exploit (UFE) and 
the reconstruction map R. From Proposition 2.5, we know that the set of fast equilibria is char
acterized by the map R : Q → ℰfast. Hence by continuity of R, we get that x∗(t) = R(q∗(t)) =
R(Qfastx∗(t)) for a.e. t ∈ [0, T ]. In particular, by Step 3, this also proves continuity of the limit 
trajectory x∗, and moreover, also strong convergence xε → x∗ in any Lp([0, T ],RI ), p ∈ [1,∞[
by dominated convergence. □
Proposition 4.5 (Liminf estimate). Let (xε)ε>0 be any sequence such that xε ⇀ x∗ in 
L1([0, T ],C) and supε>0 ∥xε(t)∥L∞([0,T ]) ≤ C for some C > 0. Then, we have the estimate 
lim infε→0 ℒε(xε) ≥ ℒeff(x∗).

Proof. W.l.o.g. we may assume that the sequence (xε)ε>0 satisfies ℒε(xε) ≤ C, since otherwise 
the claim is trivial. By the compactness result Proposition 4.3, we conclude that the limit satisfies 
x∗ ∈ ℰfast for a.e. t ∈ [0, T ]. Moreover, there are fluxes J ε = (︁

J ε
r

)︁
r∈ℛ such that the continuity 

equation ẋε = GT J ε is satisfied, and we have

ℒε(x
ε) + ε ≥

T∫︂
0 

∑︂
r∈ℛslow

S(J ε
r |Ψ+

r ,Ψ−
r )dt +

T∫︂
0 

∑︂
r∈ℛfast

S(J ε
r |Ψ

+
r

ε
,
Ψ−

r

ε
)dt

≥
T∫︂

0 

∑︂
r∈ℛslow

S(J ε
r |Ψ+

r ,Ψ−
r )dt.

Recall by (4.6), that for the slow fluxes we have weak convergence of J ε
r ⇀ J ∗

r in L1([0, T ]). 
Moreover, Ψ±

r are bounded and continuous, and we have strong convergence xε → x∗ in 
Lp([0, T ],C). Also note that the function (J, x) ↦→ S(J |Ψ+(x),Ψ−(x)) is lower semicontin
uous as a Legendre transform. Hence, we get the liminf estimate by Ioffe’s theorem (see e.g. [9, 
Th. 7.5]), i.e.
20 



Y. Gao and A. Stephan Journal of Differential Equations 449 (2025) 113721 
lim inf
ε→0 

ℒε(x
ε) ≥

T∫︂
0 

∑︂
r∈ℛslow

S(J ∗
r |Ψ+

r ,Ψ−
r )dt.

Applying the coarse-graining map Qfast to the continuity equation and taking the limit in the 
continuity equation, we get that

Qfastẋ
∗ = QfastG

T J ∗ =
∑︂

r∈ℛslow

J ∗
r Qfastγr . (4.7)

Hence, we can contract over all these fluxes and obtain the desired liminf-estimate involving 
ℒeff. □

Next, we prove the limsup-inequality for the Γ-convergence result. To handle also paths that 
might reach the boundary ∂C, we use the positivity assumption (2.10). Note that the theory for 
HJE in Section 5 assumes that the underlying domain Ω has a positive distance to the boundary, 
so the assumption (2.10) is indeed not necessary for our main theorem.

Proposition 4.6 (Construction of recovery sequence). Let x∗ ∈ L1([0, T ],C) with x∗(t) ≤ C for 
a.e. t ∈ [0, T ]. Let assumption (2.10) holds. Then, there exists a family (xε)ε>0 such that xε → x∗
in C([0, T ],C) (and hence also in L1([0, T ],C)) and limε→0 ℒε(xε) = ℒeff(x∗).

Proof. The proof is done in several steps. 
Step 0: First, we may assume that ℒeff(x∗) < ∞, because if ℒeff(x∗) = ∞ we take the constant 
sequence xε = x∗ and the liminf provides that also ℒε(xε) → ∞. Hence, we may assume that 
x∗ ∈ ACx([0, T ],C), q := Qfastx∗ ∈ W1,1([0, T ],Rmfast) and that x∗(t) ∈ ℰfast for all t ∈ [0, T ]. 
In particular, we have that x∗ is bounded. Moreover, the bound on the action functional provides 
the existence of general fluxes Jr ∈ L1([0, T ]) such that the coarse-grained continuity equation 
of the form q̇ =∑︁

r∈ℛslow
JrQfastγr (see (4.7)) is satisfied. 

The aim is to construct a continuity equation for the whole system ẋε = ∑︁
r Jrγr , i.e. to find 

fluxes J = (Jr )r and show that this sequence provides ℒε(xε) → ℒeff(x∗). We do this in two 
steps: First, we handle the problems arising through the boundary of C by shifting the concen
trations; secondly, we show that for positive concentrations the constant sequence provides a 
recovery sequence. 
Step 1: We first show that for a suitable shift xδ ≥ 0 with xδ → x∗ we have for all slow reactions 
r ∈ ℛslow the limsup-inequality

lim sup
δ→0 

T∫︂
0 

S(J r |Ψ+
r (xδ(t)),Ψ+

r (xδ(t)))dt ≤
T∫︂

0 

S(J r |Ψ+
r (x(t)),Ψ+

r (x(t)))dt.

In order to do so, we have to ensure, that xδ ∈ ℰfast and that the continuity equation q̇ =∑︁
r∈ℛslow

JrQfastγr is satisfied. For this, we use the positivity assumption (2.10). Hence, there ex
ists q̄ such that R(q + δq̄)i > 0 and that R(q + δq̄)i ≥ R(q)i on [0, T ]. We define xδ := R(q + δq̄)

and we have that xδ → x∗ monotonously. Note that the fluxes are not changed, because the 
derivative of q is independent of the shift. 
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From the monotone convergence xδ → x∗ the desired convergence follows by a standard du
alization argument regardless the degeneracy of S at the boundary ∂C. Indeed, introducing 
gδ = Ψ+

r (xδ), hδ = Ψ−
r (xδ), which also converges monotonously to g and h on [0, T ], respec

tively, we want to show

gδ → g,hδ → h,S(J r |g,h) ∈ L1([0, T ]) ⇒ lim sup
δ→0 

T∫︂
0 

S(J |gδ,hδ)dt ≤
T∫︂

0 

S(J |g,h)dt.

For this, we use the rewriting S(J |g,h) = infJ=u−w ℋ(u|g) + ℋ(w|h) from Lemma 3.2. In 
particular, we may assume that for all n ∈ N we have functions un,wn with J = un − wn such 
that

T∫︂
0 

S(J |g,h)dt ≥
T∫︂

0 

ℋ(un|g) +ℋ(wn|h)dt − 1 
n
. (4.8)

Observe that for fixed n ∈ N , we have by monotone convergence that 
∫︁ T

0 ℋ(un|gδ)dt →∫︁ T

0 ℋ(un|g)dt (and similarly also for 
∫︁ T

0 ℋ(wn|hδ)dt). Adding these two limits and using (4.8), 
we obtain

T∫︂
0 

S(J |g,h)dt ≥
T∫︂

0 

ℋ(un|gδ) +ℋ(wn|hδ) + o(δ) − 1 
n

≥
T∫︂

0 

S(J |gδ,hδ) + o(δ) − 1 
n
.

This finishes the proof of the claim because δ > 0 and n ∈ N are arbitrary.
Step 2: By Step 1, we may assume that x∗ is strictly positive. We define the constant sequence 

xε = R(q) = R(Qfastx∗). Then, we have

d 
dt

xε = DR(q)q̇ =
∑︂

r∈ℛslow

Jr (DR(q)Qfast) γr .

By the definition of the projection P in Proposition 2.5, this can be rewritten as

ẋε =
∑︂

r∈ℛslow

Jr (I − P (x(t))) γr =
∑︂

r∈ℛslow

Jrγr +
∑︂

r∈ℛslow

JrP (x(t))γr .

For the last term, we use that range(P ) = Γfast. Hence, there are (time-dependent) coefficients 
(Jr = Jr(t))r∈ℛfast such that 

∑︁
r∈ℛslow

JrP (x(t))γr =∑︁
r∈ℛfast

Jr(t)γr . The map Jr ↦→ Jr is lin
ear and uniformly bounded by Proposition 2.5. Hence, defining the slow fluxes Jr := Jr for 
r ∈ ℛslow, we have the exact continuity equation involving all reaction r

ẋε =
∑︂

r∈ℛslow∪ℛfast

Jrγr .

By the compactness argument for slow fluxes in (4.5), we may assume that the slow fluxes Jr , 
r ∈ ℛslow are in L𝒞([0, T ]). Since the fast fluxes Jr , r ∈ ℛfast are linearly dependent of Jr and 
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obtained by a bounded map, they are also in L𝒞([0, T ]). 
Step 3: With the above construction, the ε-dependent Lagrangian is given by

Lε(x, v) = inf 
v=GT J

⎧⎨⎩ ∑︂
r∈ℛslow

S(Jr |Ψ+
r (x),Ψ−

r (x)) +
∑︂

r∈ℛfast

S(Jr | 1
ε
Ψ+

r (x), 1
ε
Ψ−

r (x))

⎫⎬⎭ ,

and it suffices to show that for all fast reactions r ∈ℛfast, we have

T∫︂
0 

S(Jr |1

ε
Ψ+

r (x),
1

ε
Ψ−

r (x))dt =
T∫︂

0 

Ψr(x∗)
ε

𝒞(
εJr

Ψr(x∗)
)dt → 0.

Here we have used that on the slow manifold we have Ψ+
r = Ψ−

r =: Ψr . Indeed, to see this 
convergence holds true, we use the estimate

1

2
|r| log(|r| + 1) ≤ 𝒞(r) ≤ 2|r| log(|r| + 1).

Denoting Ψr(x
∗) = ρ with 0 < 1 

M
≤ ρ ≤ M < ∞, we have for small ε > 0 that

ρ

ε
𝒞(

εJr(t)

ρ
) ≤ ρ

ε

{︃
2|εJr(t)

ρ
| log

(︃
|εJr(t)

ρ
| + 1

)︃}︃
= 2|Jr(t)| log

(︃
|εJr(t)

ρ
| + 1

)︃
≤ 2|Jr(t)| log (|Jr(t)| + 1) ≤ 4𝒞(Jr (t)),

which is integrable. Moreover, we have that log
(︂
| εJr (t)

ρ
| + 1

)︂
≤ ε

ρ
|Jr(t)|, which is also inte

grable and converges pointwise to 0 for almost all t ∈ [0, T ]. Hence, also |Jr(t)| log
(︂
| εJr (t)

ρ
| + 1

)︂
converges pointwisely to zero for almost all t ∈ [0, T ], which implies, by the dominated conver
gence theorem, that also

T∫︂
0 

Ψr(x∗)
ε

𝒞(
εJr(t) 
Ψr(x∗)

)dt → 0.

Hence, we have that the constant sequence satisfies ℒε(x∗) → ℒeff(x∗), which proves the 
claim. □

Putting the above results together, Theorem 4.2 can now be proved.

Proof of Theorem 4.2. The claim now follows from Proposition 4.5 and Proposition 4.6. □
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5. Convergence of viscosity solutions of 𝜺-dependent HJE

In this section, we fix any bounded domain Ω, Ω ⊂ RI+ such that the boundary of Ω has a 
positive distance to the boundary ∂RI+ and such that (HJEε) holds. Notice for Ω, we have the 
lower estimate

∃c0 > 0, ∀x ∈ Ω, ∀r ∈ℛ : Ψ+
r (x),Ψ−

r (x) ≥ c0. (5.1)

Recall the Hamiltonian Hε(x,p) from (1.1) on Ω × RI . Recalling the stoichiometric subspace 
Γ = span {γr : r ∈ℛ} and Γ⊥ = {︁

q ∈ RI : ∀γ ∈ Γ : q · γ = 0
}︁
, it is easy to see for any p ∈ RI , 

we have that

Hε(x,p) = Hε(x,p + p⊥), ∀p⊥ ∈ Γ⊥. (5.2)

In particular Hε is degenerate because for p ∈ Γ⊥ we have Hε(x,p) ≡ ∂xHε(x,p) ≡ 0. Note that 
we have already seen this degeneracy for the corresponding Lagrangian Lε because if v ≠ Γ then 
Lε(x, v) = +∞. From the above degeneracy of Hε, one can expect that the usual assumptions 
on Hamiltonian for the wellposedness of Hamilton-Jacobi equation will only be effective for p
evaluated (or measured) in the direction of γr , i.e. for the quantities γr · p, which is shown in the 
next lemma.

Lemma 5.1. For any ε > 0, we have the uniform coercivity of Hε on Ω ⊂ RI and in the directions 
of Γ ⊂ RI , i.e.,

inf 
x∈Ω

Hε(x,p) → +∞ whenever |γr · p| → +∞ for some r ∈ℛ. (5.3)

Proof. From the definition of Hε and (5.1), we have

Hε(x,p) =
∑︂
r∈ℛ

(︁
Ψ+

r (x)eγr ·p − Ψ+
r (x) + Ψ−

r (x)e−γr ·p − Ψ−
r (x)

)︁
≥

∑︂
r∈ℛslow

[min{Ψ+
r (x),Ψ−

r (x)} (︁eγr ·p + e−γr ·p)︁− Ψ+
r (x) − Ψ−

r (x)]

+ 1

ε

∑︂
r∈ℛfast

[min{Ψ+
r (x),Ψ−

r (x)} (︁eγr ·p + e−γr ·p)︁− Ψ+
r (x) − Ψ−

r (x)]

≥
∑︂

r∈ℛslow

[c0
(︁
eγr ·p + e−γr ·p)︁− Ψ+

r (x) − Ψ−
r (x)]

+ 1

ε

∑︂
r∈ℛfast

[c0
(︁
eγr ·p + e−γr ·p)︁− Ψ+

r (x) − Ψ−
r (x)]

≥
∑︂

r∈ℛslow

[2c0|γr · p| − Ψ+
r (x) − Ψ−

r (x)]

+ 1

ε

∑︂
r∈ℛfast

[2c0|γr · p| − Ψ+
r (x) − Ψ−

r (x)] → +∞
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uniformly in x ∈ Ω, whenever |γr · p| → +∞ for some r ∈ℛ. □
Recall the fast-slow HJE problem for the Hamiltonian Hε in Ω with state constraints is given 

in (HJEε), i.e.,

∂tu
ε(x, t) + Hε(x,∇uε(x)) ≤ 0, (x, t) ∈ Ω × (0, T ),

∂tu
ε(x, t) + Hε(x,∇uε(x)) ≥ 0, (x, t) ∈ Ω × (0, T ),

uε(x,0) = uε
0(x), x ∈ Ω.

The specific assumptions on initial data uε
0 will be given below in Assumption 5.3. Here we also 

recall the definition of viscosity solutions to (HJEε) [7].

Definition 5.2. Given any ε > 0, a function uε is a viscosity solution to (HJEε) if it is both a 
viscosity subsolution and supersolution in the following sense: uε is a viscosity subsolution of

∂tu
ε + Hε(x,∇uε(x, t)) ≤ 0

on Ω × (0, T ), if for every ϕ ∈ C1(Ω × (0, T )) and every (x0, t0) ∈ Ω × (0, T ) such that u − ϕ

has a maximum at (x0, t0), we have

∂tϕ(x0, t0) + Hε(x0,∇ϕ(x0, t0)) ≤ 0;
uε is a viscosity supersolution of

∂tu
ε + Hε(x,∇uε(x, t)) ≥ 0

on Ω × (0, T ), if for every ϕ ∈ C1(Ω × (0, T )) and every (x0, t0) ∈ Ω × (0, T ) such that u − ϕ

has a minimum at (x0, t0), we have

∂tϕ(x0, t0) + Hε(x0,∇ϕ(x0, t0))) ≥ 0.

For fixed ε > 0, the variational representation for the state-constraint viscosity solution to 
(HJEε) follows by [20] and is given by

uε(x, t) = inf 
x∈AC([0,t];Ω), x(t)=x

(︁
uε

0(x(0)) +
t∫︂

0 

Lε(xs , ẋs) ds
)︁
. (5.4)

We remark that although our Hamiltonian Hε is degenerate and indeed coercive in Γ (see 
Lemma 5.1), this representation still holds. However, the existence and representation results 
are not uniform in ε. We also note that for fixed ε > 0, we have Hε ∈ BUC(Ω × BR) for any 
R > 0. Here BUC(Ω × BR) means bounded and uniformly continuous functions on Ω × BR . 
However, the fast-slow Hamiltonian Hε is not uniformly bounded when ε → 0.

We introduce a smaller function space

Π := {u ∈ BUC(Ω) : ∇u ∈ Γ⊥ } = {u ∈ BUC(Ω) : γr · ∇u = 0,∀r ∈ℛfast} (5.5)
fast
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and we propose the following conditions for the initial data:

Assumption 5.3 (Well prepared initial data). The family of initial data (uε
0)ε>0 of (HJEε) satis

fies the following conditions

(i) ∀ε > 0, uε
0(·) ∈ Π;

(ii) there exists C > 0 such that ∥uε
0∥C1(Ω) ≤ C uniformly in ε > 0;

(iii) there exists u∗
0 ∈ C1(Ω) such that uε

0 → u∗
0 in C(Ω).

With the above assumption, we can derive ε-uniform Lipschitz continuity of the solution.

Proposition 5.4. Under Assumption 5.3, let uε ∈ BUC(Ω × [0, T ]) be a viscosity solution to 
(HJEε), then we have the uniform Lipschitz estimates for uε, i.e., there exists a constant CL > 0
such that

|∂tu
ε(x, t)| + |γr · ∇uε(x, t)| ≤ CL, for a.e. (x, t) ∈ Ω × [0, T ], ∀r ∈ℛ. (5.6)

Proof. The proof is performed in three steps. 
Step 1: Existence of uε: 
One can directly verify that uε ∈ BUC(Ω×[0, T ]) given by (5.4) is a viscosity solution to (HJEε)
for fixed ε. It indeed can be proved via Perron’s method [20, Theorems 5.2, 5.8]. 
Step 2: uε is Lipschitz continuous in time for all t ∈ [0, T ] uniformly in ε: 
Since ∥∇uε

0∥L∞ ≤ C and γr · ∇uε
0 = 0, ∀r ∈ ℛfast, we conclude that there exists some constant 

C∗ > 0 such that

|Hε(x,∇uε
0(x))|L∞ ≤ C∗ uniformly in ε. (5.7)

Thus one can verify that

φ(x, t) := uε
0 − C∗t is a classical subsolution;

φ(x, t) := uε
0 + C∗t is a classical supersolution.

(5.8)

Then based on the comparison principle [20, Theorem 3.5], we have

φ(x, t) ≤ uε(x, t) ≤ φ(x, t) uniformly in ε. (5.9)

In particular, together with Assumption 5.3 for uε
0, we have that uε is bounded uniformly in ε > 0

and (x, t) ∈ Ω × [0, T ]. Then we have

−C∗ ≤ uε(x, t) − uε
0

t
≤ C∗. (5.10)

Taking the supremum for t ≥ 0, we obtain the Lipschitz continuity in time at t = 0. Moreover, to 
obtain Lipschitz continuity in time at any t , we note the Hamiltonian is time homogeneous and 
thus any time translation of a solution is still a solution v(x, t) = uε(x, s + t) with initial data 
v0 = v(x,0) = uε(x, s). From the comparison principle and
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v0 − ∥uε
0 − v0∥L∞ ≤ uε

0 ≤ v0 + ∥uε
0 − v0∥L∞,

we have

v(x, t) − ∥uε
0 − v0∥L∞ ≤ uε(x, t) ≤ v(x, t) + ∥uε

0 − v0∥L∞ .

This means

uε(x, s + t) − ∥uε
0 − v0∥L∞ ≤ uε(x, t) ≤ uε(x, s + t) + ∥uε

0 − v0∥L∞

and thus ⃓⃓⃓⃓
uε(x, t + s) − uε(x, t)

s

⃓⃓⃓⃓
≤
⃦⃦⃦⃦
uε(·, s) − uε(·,0)

s

⃦⃦⃦⃦
L∞

≤ C∗. (5.11)

Taking the supremum for s ≥ 0, one concludes the Lipschitz continuity in time at any t

|∂tu
ε(x, t)| ≤ C∗ for a.e. (x, t) ∈ Ω × [0, T ]. (5.12)

Step 3: uε is Lipschitz continuous in space uniformly in ε:
First fix any x ∈ Ω and t ∈ (0,+∞). Given any R > 0 such that BR(x) ⊂ Ω, for any y ∈

(x + Γ) ∩ BR(x), consider the function

φ(y, s) = uε(y, s) − M|s − t | − CL|y − x| − δ

R2 − |x − y|2 , (5.13)

where CL,M > 0 are constants large enough to be chosen later and δ > 0 is an arbitrary constant. 
Then due to the boundedness of uε and φ → −∞ as y → ∂BR(x), there exists a maximizer 
y∗ ∈ (x + Γ) ∩ BR(x) and t∗ ∈ (0,+∞) of φ(y, s), such that

φ(y∗, t∗) = uε(y∗, t∗) − M|t∗ − t | − CL|y∗ − x| − δ

R2 − |x − y∗|2

≥φ(y, s) = uε(y, s) − M|s − t | − CL|y − x| − δ

R2 − |x − y|2
(5.14)

for any y ∈ (x + Γ) ∩ BR(x) and any s ∈ (0,+∞). Since u is Lipschitz in time, for sufficient 
large M > 0, one must have t∗ = t . Otherwise, one can take y = y∗ and s = t in (5.14) to obtain

uε(y∗, t∗) − M|t∗ − t | ≥ uε(y∗, t).

This, together with the Lipschitz constant C∗ in time in (5.12), we further have

uε(y∗, t) + (C∗ − M)|t∗ − t | > uε(y∗, t∗) − M|t∗ − t | ≥ uε(y∗, t),

which is impossible for M > C∗. Hence one must have t∗ = t .
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Now we show that y∗ = x for CL sufficiently large. To show this by the arguments of contra
diction, we first assume y∗ ≠ x. From the Lipschitz estimate in time (5.12), and because uε is a 
viscosity subsolution and |y − x| is differentiable at any y ≠ x, we know

Hε(y
∗,CL

y∗ − x 
|y∗ − x| + 2δ(y∗ − x) 

(R2 − |x − y∗|2)2 ) ≤ C, (5.15)

where C is a constant depending only on C∗. Then using the same estimate of Lemma 5.1, we 
have

C ≥Hε(y
∗,CL

y∗ − x 
|y∗ − x| + 2δ(y∗ − x) 

(R2 − |x − y∗|2)2 )

≥
∑︂

r∈ℛslow

[︂
2c0

(︁
CL

⃓⃓⃓
γr · y∗ − x 

|y∗ − x|
⃓⃓⃓
−
⃓⃓⃓ 2δγr · (x − y∗) 
(R2 − |x − y∗|2)2

⃓⃓⃓)︁− Ψ+
r (x) − Ψ−

r (x)
]︂

+ 1

ε

∑︂
r∈ℛfast

[︂
2c0

(︁
CL

⃓⃓⃓
γr · y∗ − x 

|y∗ − x|
⃓⃓⃓
−
⃓⃓⃓ 2δγr · (x − y∗) 
(R2 − |x − y∗|2)2

⃓⃓⃓)︁− Ψ+
r (x) − Ψ−

r (x)
]︂
.

(5.16)

Since Ψ±
r is bounded and y∗ is in the interior of BR(x), we have

∑︂
r∈ℛfast

[︂
2c0CL

⃓⃓⃓
γr · y∗ − x 

|y∗ − x|
⃓⃓⃓
− Ψ+

r (x) − Ψ−
r (x)

]︂
≤ εC. (5.17)

Taking CL sufficiently large, this implies

γr · (y∗ − x) = 0, ∀r ∈ℛfast. (5.18)

Therefore, plugging (5.18) into the original Hamiltonian (5.15), the summation for the fast reac
tion vanishes, so (5.15) implies

∑︂
r∈ℛslow

[︂
2c0

(︁
CL

⃓⃓
γr · y∗ − x 

|y∗ − x|
⃓⃓− ⃓⃓ 2δγr · (x − y∗) 

(R2 − |x − y∗|2)2

⃓⃓)︁− Ψ+
r (x) − Ψ−

r (x)
]︂

≤ C. (5.19)

With the same arguments as (5.18), we obtain

γr · (y∗ − x) = 0, ∀r ∈ ℛslow. (5.20)

Combining (5.18) and (5.20), notice also y∗ − x ∈ Γ, thus we must have y∗ = x. Therefore, for 
such a sufficient large CL, (5.14) yields

uε(y, s) − uε(x, t) ≤ CL|y − x| + M|s − t | − δ

R2 + δ

R2 − |x − y|2 . (5.21)

Taking δ → 0, s = t and then exchanging x, y shows

|uε(y, t) − uε(x, t)| ≤ CL|y − x|, for a.e. t ∈ [0, T ], x, y ∈ Ω with x − y ∈ Γ. (5.22)
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This implies

|γr · ∇uε(x, t)| ≤ CL, for a.e. (x, t) ∈ Ω × [0, T ], ∀r ∈ℛ. (5.23)

Combining (5.12) and (5.23), we finish the proof. □
Remark 5.5. We remark that the bound in (5.6) can be refined for the fast reactions. Indeed, from 
the ε-uniform bound

1

ε
|
∑︂

r∈ℛfast

Ψ+
r (x)

(︂
eγr ·∇uε − 1

)︂
+ Ψ−

r (x)
(︂

e−γr ·∇uε − 1
)︂

| ≤ C,

we conclude for fast reactions r ∈ℛfast and for x ∈ ℳS = ℰfast ∩Ω (such that we have Ψ+
r (x) =

Ψ−
r (x)) that

0 ≤ 2Ψ+
r (x)(cosh(γr · ∇uε) − 1) ≤

∑︂
r∈ℛfast

2Ψ+
r (x)(cosh(γr · ∇uε) − 1) ≤ Cε → 0.

This, together with (5.1), yields that for r ∈ℛfast,

γr · ∇uε → 0 uniformly in t ∈ [0, T ], x ∈ ℳS.

Based on the above Lipschitz estimates for the viscosity solution, which is uniform in ε, we 
have the following uniqueness theorem. With the Lipschitz estimates, the uniqueness is standard, 
however, we still give a brief proof since our Hamiltonian is degenerate on Γ⊥ and the Lipschitz 
estimate is in the sense of (5.6).

Theorem 5.6. Under Assumption 5.3, (HJEε) has a unique Lipschitz viscosity solution uε(x, t), 
for which, uniform Lipschitz estimate (5.6) holds.

Proof. The existence is obvious thanks to the variational representation (5.4). Based on Lipschitz 
estimates in Proposition 5.4, we can introduce a modified Hamiltonian ˜︁Hε ∈ C(Ω × Rn) such 
that

˜︁Hε(x,p) =
{︃

Hε(x,p), if |γr · p| ≤ CL for all r ∈ℛ;
|p|, if |γr · p| ≥ 2CL for some r ∈ℛ,

(5.24)

and Lipschitz continuously connected otherwise. We point out that although the modified Hamil
tonian is based on the spatial Lipschitz estimates only in the directions of Γ, it still satisfies the 
usual assumptions for Hamiltonian (cf. [4,26]): for any p,q ∈ RI and x, y ∈ Ω:

|˜︁Hε(x,p) − ˜︁Hε(y,p)| ≤ Cε(1 + |p|)|x − y|, |˜︁Hε(x,p) − ˜︁Hε(x, q)| ≤ Cε|p − q|. (5.25)

Indeed, whenever |γr ·p| ≤ CL,∀r ∈ ℛ, we have |˜︁Hε(x,p)− ˜︁Hε(y,p)| ≤ Cε|x − y|; and other
wise |˜︁Hε(x,p) − ˜︁Hε(y,p)| ≤ Cε(1 + |p|)|x − y|. Moreover, if |γr · p| ≤ CL,∀r ∈ ℛ, we have 
|˜︁Hε(x,p)− ˜︁Hε(x, q)| ≤ Cε

∑︁
r |γr ·(p−q)| ≤ Cε|p−q|; and otherwise |˜︁Hε(x,p)− ˜︁Hε(x, q)| ≤

Cε|p − q|.
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Thus for any uε ∈ BUC(Ω × [0, T ]) solves (HJEε) with the Lipschitz estimate (5.6) will also 
solve the HJE with Hε replaced by ˜︁Hε . Then by (5.25), one has the uniqueness of viscosity 
solution to (HJEε) with Hε replaced by ˜︁Hε , so uε is the unique Lipschitz viscosity solution to 
(HJEε). □

Using the ε-uniform Lipschitz estimate and the ε-uniform boundedness, we then apply the 
Arzelá-Ascoli Theorem in the Banach space C(K × [0, T ]) for any compact subset K ⊂ Ω.

Corollary 5.7. Let uε be the unique Lipschitz viscosity solution obtained in Theorem 5.6. For 
any compact subset K ⊂ Ω, there exist û ∈ BUC(Ω×[0, T ]) and a subsequence εk such that uεk

converges to û uniformly in C(K × [0, T ]) and the uniform Lipschitz estimate (5.6) holds for û.

We remark that the limit û for x ∈ ℳS = ℰfast ∩ Ω is actually proven to be unique via the 
Gamma-convergence result and Proposition 6.1. Thus one indeed obtains the uniform conver
gence on K × [0, T ], for any compact K ⊂ ℳS.

6. Identification of limiting HJE with semigroup representation

The aim of the section is to identify the limit u∗ of the sequence of solutions uε from Corol
lary 5.7 by the Γ-convergence result from Section 4. In particular, the following representation 
formula provides also a uniqueness result for the limit. The viscosity solutions uε in the rep
resentation formula (5.4) are given as an infimum and Γ-convergence is tailored to provide 
convergence of minimizers. In particular, we want to show that u∗ satisfies the variational repre
sentation (6.3) and solves the Hamilton-Jacobi equation for the effective Heff. Finally, combining 
Theorem 6.4 and the limit u∗ of the sequence of solutions uε from Corollary 5.7, we finish the 
proof of the Main Theorem in the introduction.

6.1. Consequence of the Γ-convergence result

Before we connect u∗ with a representation formula, we first recall how Γ-convergence pro

vides the identification of the limit of minimizers of functionals. For that, let Fε
Γ → F0 and let xε

be s.t. Fε(xε) = infFε and xε → x0. Then we have that x0 = infF0. Indeed, we have by the Γ
liminf, that infF0 ≤ F0(x0) ≤ lim infε→0 Fε(xε) = lim infε→0 infFε . Moreover, for any x there is 
a recovery sequence, x̄ε → x such that F0(x) = lim supε→0 Fε(x̄ε) ≥ lim supε→0 infFε . Since, x
is arbitrary, we obtain that infF0 ≥ lim supε→0 infFε which thus concludes that limε→0 infFε =
infF0 = F0(x0).

In our situation, we have on L1([0, T ],C) that ℒε
M −→ ℒeff provided that the final point of 

the trajectories is fixed, see 4.2. For fixed uε
0 ∈ C(Ω), T > 0 and x ∈ Ω, we recast the viscosity 

solution uε , represented in (5.4), as

uε(x,T ) = inf
{︁
uε

0(xε(0)) +ℒε(xε) : xε ∈ AC([0, T ],Ω),xε(T ) = x
}︁
.

We define the compact slow-manifold for the Hamilton-Jacobi equation by

ℳS := Ω ∩ ℰfast. (6.1)
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Combining the Γ-convergence result in Theorem 4.2 and the uniform convergence from 
Corollary 5.7, we give a representation formula for the limit u∗ in the following proposition.

Proposition 6.1. Given any T > 0, assume the initial data uε
0 satisfies Assumption 5.3 and uε is 

the viscosity solution to (HJEε). Assume both (FDB) and (UFE) conditions. Let ℒeff be defined 
by (4.2), and let û be the limit of uε in Corollary 5.7. Then for all x ∈ ℳS, we have the unique 
variational representation

u∗(x, T ) := lim 
ε→0

uε(x,T ) = inf
{︁
u∗

0(x(0)) +ℒeff(x) : x ∈ AC([0, T ],Ω), x(T ) = x
}︁

= inf
{︁
u∗

0(x(0)) +ℒeff(x) : x ∈ AC([0, T ],ℳS), x(T ) = x
}︁
.

Moreover, uε converges to u∗ = û uniformly on K × [0, T ] for any compact subset K ⊂ ℳo
S.

Proof. Let us fix (x, T ) ∈ ℳS × (0,+∞). To simplify notations, we define that X := {x ∈
AC([0, T ],Ω), x(T ) = x} and

Fε(x) := uε
0(x(0)) +ℒε(x), F0(x) := u∗

0(x(0)) +ℒeff(x).

Let xε ∈ AC([0, T ],Ω) ⊂ AC([0, T ],C) such that Fε(xε) = infFε . Then, we have that Fε(xε) <

∞. Since, uε
0 is uniformly bounded and xε(0) ∈ Ω we conclude that ℒε(xε) < ∞. By the com

pactness results in Proposition 4.3, we conclude that there is a limit x0 such that xε → x0 in 
C([0, T ],Ω), and moreover, x0 ∈ ACx([0, T ],ℳS). We want to show that F0(x0) = infF0.

Indeed, we have

infF0 ≤ F0(x0) = u∗
0(x0(0)) +ℒeff(x0) ≤ lim 

ε→0
uε

0(xε(0)) + lim inf
ε→0 

ℒε(xε)

≤ lim inf
ε→0 

Fε(xε) = lim inf
ε→0 

infFε = lim inf
ε→0 

uε,
(6.2)

where we have used the Γ-convergence of ℒε → ℒeff, the equicontinuity of uε
0, and the con

vergence xε → x0 in C([0, T ],Ω). Moreover by the construction of the recovery sequence (see 
4.6), for any x ∈ X there is sequence x̄ε → x in X (in particular xε(0) → x(0)) such that 
ℒε(x̄ε) → ℒeff(x). Hence, we have that

F0(x) = u∗
0(x(0)) +ℒeff(x) ≥ lim 

ε→0
uε

0(x̄ε(0)) + lim sup
ε→0 

ℒε(x̄ε)

≥ lim sup
ε→0 

uε
0(x̄ε(0)) +ℒε(x̄ε) = lim sup

ε→0 
Fε(x̄ε) ≥ lim sup

ε→0 
infFε = lim sup

ε→0 
uε.

Taking the infimum w.r.t. x ∈ X we conclude that infF0 ≥ lim supε→0 infFε . This together with 
(6.2), hence implies that

lim 
ε→0

uε = lim 
ε→0

infFε = infF0, and F0(x0) = infF0.

This means that for x ∈ℳS ⊂ Ω we have

u∗(x, T ) := lim uε(x,T ) = infF0 = inf
{︁
u∗

0(x(0)) +ℒeff(x) : x ∈ AC([0, T ],ℳS), x(T ) = x
}︁
.

ε→0
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Moreover, u∗(x, t) = û(x, t) for any interior point x ∈ ℳo
S. Thus the subsequence convergence 

for uε obtained in Corollary 5.7 is actually a uniform convergence for all ε → 0 since the limit 
limε→0 uε(x,T ) = u∗(x, T ) = infF0, x ∈ ℳS is unique. □

The above characterization provides that the limit u∗ can be expressed on the compact mani
fold ℳS (possibly with boundary) by the least-action representation

u∗(x, t) = inf 
x∈ACx([0,t];ℳS)

{︁
u∗

0(x(0)) +
t∫︂

0 

Leff(xs , ẋs) ds
}︁
. (6.3)

Remark 6.2. The above identification provides a formula for u∗ = û on the slow manifold ℳS. 
A natural question is, how the limit looks like away from ℳS, because the variational represen
tation is not applicable. Corollary 5.7 only shows that û is continuous and Lipschitz, however a 
more detailed characterization is open and left for further analysis.

6.2. Viscosity solution of effective HJE with Heff

Recall the compact slow manifold ℳS defined in (6.1). We are going to verify by the dynamic 
programming that u∗ from (6.3) satisfied the effective state-constraint HJE (1.2) on the manifold 
ℳS, i.e.,

∂tu(x, t) + Heff(x, dxu(x, t)) ≤ 0, (x, t) ∈ℳo
S × (0,+∞),

∂tu(x, t) + Heff(x, dxu(x, t)) ≥ 0, (x, t) ∈ℳS × (0,+∞),

u(x,0) = u0(x), x ∈ ℳS = ℳS,

where ℳo
S denotes the interior of ℳS. Here, recall that the differential dxu in differential geom

etry of a smooth function u(·, t) : ℳS → R at the point x0 ∈ ℳS is defined by

dxu(x0, t)[v] := lim 
τ→0

u(x(τ ), t) − u(x(0), t)

τ
,

where x : R → ℳS is a smooth curve with x(0) = x0, ẋ(0) = v ∈ TxℳS. (Note that the dif
ferential acts only in the first argument x ∈ ℳS.) Viscosity solutions of (1.2) on manifolds 
ℳS × (0,+∞) are understood as follows, which we recall from [7,8]:

Definition 6.3. A function u is a viscosity solution to (1.2) if it is both a viscosity subsolution 
and supersolution in the following sense: u is a viscosity subsolution of

∂tu + Heff(x, dxu) ≤ 0

on ℳo
S × (0,+∞), if for every ϕ ∈ C1(ℳS × (0,+∞)) and every (x0, t0) ∈ ℳo

S × (0,+∞)

such that u − ϕ has a maximum at (x0, t0), we have

∂tϕ(x0, t0) + Heff(x0, dxϕ(x0, t0)) ≤ 0;
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u is a viscosity supersolution of

∂tu + Heff(x, dxu) ≥ 0

on ℳS × (0,+∞), if for every ϕ ∈ C1(ℳS × (0,+∞)) and every (x0, t0) ∈ ℳS × (0,+∞)

such that u − ϕ has a minimum at (x0, t0), we have

∂tϕ(x0, t0) + Heff(x0, dxϕ(x0, t0))) ≥ 0.

Theorem 6.4. The limiting function u∗ represented as (6.3) is a viscosity solution to the effective 
HJE (1.2) on the manifold ℳS in the sense of Definition 6.3.

Proof. We verify both conditions separately. 
Step 1: u∗ is a subsolution: 
Let ϕ ∈ C1(ℳS × (0,+∞)) such that u − ϕ attains its maximum at (x0, t0) ∈ ℳo

S × (0,+∞). 
Then for any x ∈ ACx0([0, t0];ℳS) with x(t0) = x0, we have

ϕ(x0, t0) ≤
t0∫︂

τ

Leff(xs , ẋs) ds + u(x(τ ), τ ) ≤
t0∫︂

τ

Leff(xs , ẋs) ds + ϕ(x(τ ), τ ).

Rearranging and dividing by t0 − τ , we have for any v ∈ Tx0ℳS,

ϕ(x0, t0) − ϕ(x(τ ), τ )

t0 − τ 
≤ 1 

t0 − τ

t0∫︂
τ

Leff(x
v
s , ẋv

s ) ds, (6.4)

where xv
s is any curve on ℳS such that xv

s=t0
= x0, ẋv

s=t0
= v. Taking τ → t0, we have

∂tϕ(x0, t0) + dxϕ(x0, t0)[v] − Leff(x0, v) ≤ 0, ∀v ∈ Tx0ℳS. (6.5)

Taking supremum with respect to v ∈ Tx0ℳS and using Lemma 3.3, this proves

∂tϕ(x0, t0) + Heff(x0, dxϕ(x0, t0)) ≤ 0.

Step 2: u∗ is a supersolution: 
Let ϕ ∈ C1(ℳS × (0,+∞)) such that u − ϕ attains its minimum at (x0, t0) ∈ ℳS × (0,+∞). 
Then we have

ϕ(x0, t0) = inf{
t0∫︂

τ

Leff(xs , ẋs) ds + u(x(τ ), τ )} ≥ inf{
t0∫︂

τ

Leff(xs , ẋs) ds + ϕ(x(τ ), τ )},

where x(·) ∈ ACx ([0, t0];ℳS). Thus
0
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0 ≤ sup{ϕ(x0, t0) − ϕ(x(τ ), τ ) −
t0∫︂

τ

Leff(xs , ẋs) ds}.

Hence

0 ≤ 1 
t0 − τ

sup{
t0∫︂

τ

(∂tϕ + dxϕ[ẋs])] ds −
t0∫︂

τ

Leff(xs , ẋs) ds}.

By the definition of supremum, for any ε, there exists x such that

−ε ≤ 1 
t0 − τ

t0∫︂
τ

[∂tϕ + dxϕ(xs)[ẋs] − Leff(xs , ẋs)] ds ≤ 1 
t0 − τ

t0∫︂
τ

[∂tϕ + Heff(xs , dxϕ(xs)))] ds.

Taking τ → t0, we have

∂tϕ(x0, t0) + Heff(x0, dxϕ(x0, t0)) ≥ 0.

Thus, we conclude u∗ is a viscosity solution to (1.2). □
6.3. Coarse-grained HJE

We have seen that the limit functionals Leff and Heff can also be expressed in terms of coarse
grained variables, which in turn define coarse-grained functionals L and H, see (3.5) and (3.4), 
respectively. We are going to show that also the limit u∗ of solutions of (HJEε) as a function 
on ℳS can be expressed in coarse-grained variables, which then solves the coarse-grained HJE. 
Recall the reconstruction map R from (UFE). Using the explicit parametrization of the slow
manifold ℳS, we define a new continuous function

u : Q → R, u(q) := u∗(R(q)).

Proposition 6.5. The function u = u∗ ◦ R is a viscosity solution of the HJE with the Hamiltonian 
H in (3.4) on the (flat) manifold Q in the sense of Definition 5.2.

Proof. We only show how the derivatives of u∗ translate by the chain-rule. We have ∂tu(q, t) =
∂tu

∗(R(q), t). Moreover, we know that Heff(R(q),p) = H(q,p) if QT
fastp = p. Hence, it suffices 

to show that dR(q)u
∗ = QT

fastdqu, or, equivalently, dR(q)u
∗[v] = QT

fastdqu[v] for all v ∈ TR(q)ℳS. 
Using the projection onto the tangent space TxℳS and its explicit characterization, we have 
v = dqR ◦ Qfast[v] (see Proposition 2.5). Hence, by the chain rule

dR(q)u
∗[v] = dR(q)u

∗ ◦ dqR ◦ Qfast[v] = dqu ◦ Qfast[v] ⇒ dR(q)u
∗ = QT dqu. □
fast
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We finally remark that again u has an integral representation. To see this, we define:

˜︁u(q, t) = inf 
y∈AC([0,t];Q), y(t)=q

(︁
u0(R(y(0))) +

t∫︂
0 

L(ys , ẏs) ds
)︁
.

Using the same procedure as in Theorem 6.4, we can prove that ˜︁u(q, t) is a viscosity solution of 
HJE with the Hamiltonian H. By uniqueness of viscosity solution, we obtain the representation 
formula for u(q, t) =˜︁u(q, t).
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