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Abstract
We prove the convergence of a Wasserstein gradient flow of a free energy in inhomogeneous media. Both the energy
and media can depend on the spatial variable in a fast oscillatory manner. In particular, we show that the gradient-
flow structure is preserved in the limit, which is expressed in terms of an effective energy and Wasserstein metric.
The gradient flow and its limiting behavior are analysed through an energy dissipation inequality. The result is
consistent with asymptotic analysis in the realm of homogenisation. However, we note that the effective metric is
in general different from that obtained from the Gromov–Hausdorff convergence of metric spaces. We apply our
framework to a linear Fokker–Planck equation, but we believe the approach is robust enough to be applicable in a
broader context.

1. Introduction

Optimal transport has appeared in many practical and theoretical applications, cf. [41, 43, 44, 52, 53].
Precisely, given a cost function c(·, ·) : Rn ×R

n −→R, and two probability measures μ, ν on R
n, the

problem of optimal transport is to find the minimum cost of transporting μ to ν. It has the following two
classical formulations: first by Monge [39] in terms of optimal transport map and a second formulation
using duality by Kantorovich [33] in terms of optimal coupling measure:

Monge: inf

{∫
c(x,�(x)) dμ(x) : � : Rn −→R

n, ��μ= ν

}
,

and

Kantorovich: inf

{∫∫
c(x, y) dγ (x, y);

∫
γ (x, dy) =μ(x),

∫
γ ( dx, y) = ν(y)

}
.

In the above, γ is a probability measure on the product space R
n ×R

n. The equivalence of the
above, under appropriate general assumptions, has been established in ref. [42]. Typical examples of
cost functions include the Euclidean distance square, c(x, y) = |x − y|2 which is convex and spatially
homogeneous in the sense that c(x, y) = c(x − y). In this case, the infimum value of the above two for-
mulations is the square of Wasserstein-2 distance between μ and ν, denoted as W2

2 (μ, ν). We refer to
[2, 46, 52, 53] for examples of monographs on the theory of optimal transports.

The main purpose of the current paper is to incorporate spatial inhomogeneity into the above problem,
or more precisely, the cost function c. We then consider gradient flows with respect to the Wasserstein
metric induced by c and analyse their limiting behaviour or description when the inhomogeneity con-
verges in appropriate sense. We believe these types of questions appear naturally in many applications
such as urban transportations [8, 11], network science [32], spread of epidemics [7], optics [45], and
many others. Such a consideration indeed has a long history in the realm of homogenisation [10, 48].
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On a technical level, we aim to explore how the ideas of homogenisation can be introduced into optimal
transport problems. Even though in the current paper, we work in a spatially continuous setting, the prob-
lem formulation can be posed in a discrete, graph or network setting, as seen from the above-mentioned
applications. See also the end of this section for some mathematical work on these attempts.

To be specific, we consider cost functions cε(·, ·) that depend on the spatial variables in some oscilla-
tory manner. We find that the formulation of Benamou–Brenier [5] is well-suited for this purpose. Not
only does it connect optimal transport to some underlying “dynamical process,” it allows us to incorpo-
rate spatial inhomogeneity “more or less at will”. More precisely, we focus on the case that cε(x, y) is
defined through a least action principle,

cε(x, y) = min

{∫ 1

0

Lε(żt, zt) dt, z : [0, 1] −→R
n, z0 = x, z1 = y

}
, (1.1)

where we envision that Lε is convex in the first variable v = żt and oscillatory or periodic in the sec-
ond variable zt. Note that this cost function also defines a metric in an inhomogeneous media with
periodic structure. If one further assumes that L is a bilinear form in v, given by a positive definite
matrix Bε(x),

L(v, z) = 〈Bε(z)v, v〉, (1.2)

then cε(x, y) defines a Riemannian metric on R
n

c2
ε
(x, y) = min

{∫ 1

0

〈Bε(zt)żt, żt〉 dt, z : [0, 1] −→R
n, z0 = x, z1 = y

}
. (1.3)

The above leads to the following ε-Wasserstein distance (square) between μ, ν ∈P(Rd),

W2
ε
(μ, ν) := inf

{∫∫
cε(x, y) dγ (x, y);

∫
γ (x, dy) =μ(x),

∫
γ ( dx, y) = ν(y)

}
. (1.4)

The description and formulation in this and next sections is applicable for general spatially inhomo-
geneous Bε, but the focus of this paper is when Bε takes the form Bε(x) = B

( x

ε

)
– see Section 2.4 for

precise statements and assumptions.
In order to keep the technicality in this paper manageable, we will only consider probability measures

having densities with respect to the Lebesgue measure. Henceforth, for simplicity, we will use P2(Rn)
to denote these measures or their densities. The subscript 2 means these measures have finite second
moments. More precise assumptions will be stated in Section 2.4. Now let (P2(Rn), Wε) be the Polish
space endowed with the ε-Wasserstein metric. The main questions we want to understand are: whether
gradient-flow structures in (P2(Rn), Wε) are preserved as ε→ 0 and if so, what the limiting Wasserstein
distance W and gradient flow are. We have given positive results for the case of linear Fokker–Planck
equations in periodic media.

With (1.3), the ε-Wasserstein distance Wε can be expressed using the following spatially inhomoge-
neous Benamou–Brenier formulation,

W2
ε
(ρ0, ρ1) := inf

{∫ 1

0

∫
ρt(x)〈Bε(x)vt(x), vt(x)〉 dx dt, (ρt, vt) ∈ V(ρ0, ρ1)

}
(1.5)

where

V(ρ0, ρ1) :=
{

(ρt, vt) :
∂ρt

∂t
+ ∇ · (ρtvt) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1

}
. (1.6)

The work [6] – see its Theorems A and B – in fact shows that the inf of (1.5) (and (1.4)) is achieved by
a unique interpolation between ρ0 and ρ1, given by a flow map d

dt
�ε

t = vt(�ε
t ),

ρt = (�ε

t )�ρ0, 0 ≤ t ≤ 1. (1.7)
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Note that for the case ε= 1, Bε = I, (1.5) is the celebrated Benamou–Brenier formula [5] for the standard
(squared) Wasserstein distance

W2
2 (ρ0, ρ1) = inf

{∫∫
|x − y|2 dγ (x, y);

∫
γ (x, dy) = ρ0(x) dx,

∫
γ ( dx, y) = ρ1(y) dy

}
. (1.8)

The functional in (1.5) defines an action functional on (P2(Rn), W2), which allows one to directly use
least action principles on (P2(Rn), W2) to compute the W2-distance. In the seminal paper [40], Otto went
further to regard W2 as a Pseudo-Riemannian distance on P2(Rn) with the Riemannian metric being the
same as the one given by the Benamou–Brenier formula. More precisely, for any s1, s2 on the tangent
plane TP at ρ ∈P, the metric tensor on TP × TP is given by〈

s1, s2

〉
TP ,TP

:=
∫
ρ(x)〈∇ϕ1(x), ∇ϕ2(x)〉 dx, where si = −∇ · (ρ∇ϕi), i = 1, 2. (1.9)

(See Section 2.2 for an explanation of going from vt in (1.5) to ∇ϕ above.) With the above set-up for the
Wasserstein distance, we proceed to consider gradient flows in (P2(Rn), Wε) of a given energy functional
Eε : P2(Rn) −→R,

∂tρ
ε

t = −∇WεEε(ρ
ε

t ). (1.10)

The precise dynamics is uniquely determined by a dissipation functional on the tangent plane charac-
terising the rate of change of the energy from which the Wasserstein gradient ∇Wε is derived. In this
paper, we consider energy dissipation expressed by the metric Wε (induced by (1.5)). It turns out Wε can
be formally interpreted as a Riemannian metric (see (2.11)), which in particular is given by a bilinear
form. Based on the expression of ∇Wε (see (2.14)), ε-Wasserstein gradient flow (1.10) can be explicitly
written as

∂tρ
ε

t = ∇ ·
(
ρεt B−1

ε
∇ δEε

δρ
(ρεt )

)
. (1.11)

Note that our formulation allows oscillations in both the energy Eε and media Bε.
If the total energy is taken as the relative entropy or the Kullback–Leibler divergence between ρ and

another probability distribution πε ∈P2(Rn),

Eε(ρ) = KL(ρ||πε) :=
∫
Rn

ρ(x) log
ρ(x)

πε(x)
dx, (1.12)

then the above ε-Wasserstein gradient flow (1.11) is the same as a linear Fokker–Planck equation with
oscillatory coefficients. The above energy is often called the free energy of the system and πε in (1.12)
is a stationary distribution corresponding to an underlying stochastic process.

Our main result is the evolutionary convergence of the ε-Wasserstein gradient flow (1.11) as ε→ 0,
to a limit also characterised as a gradient flow of an effective total energy E with respect to an effective
Wasserstein distance W. The distance W induced by the evolutionary convergence is still a Riemannian
metric on P2(Rn). However, we find that it is in general different from the direct Gromov–Hausdorff
limit of Wε. Even though our main result is proven for continuous state spaces, the approach we used
for proving the convergence of multi-scale gradient flows can also be applied to discrete state spaces, in
particular, graphs with inhomogeneous structure.

The main approach we use is to first recast the ε-Wasserstein gradient flow (1.11) as a generalised
gradient flow in the following form of an energy dissipation inequality (EDI)

Eε(ρ
ε

t ) +
∫ t

0

[
ψε(ρ

ε

τ
, ∂τρ

ε

τ
) +ψ∗

ε

(
ρε
τ
, −δEε

δρ
(ρε

τ
)

)]
dτ ≤ Eε(ρ

ε

0 ). (1.13)

This formulation involves dissipation functionals ψε and ψ∗
ε

on the tangent and the co-tangent plane of
P2(Rn), respectively. Inequality (1.13) is in fact equivalent to the strong form of gradient flow (1.10)
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since the functional ψε and ψ∗
ε

are convex conjugate of each other; for details, see Section 2.3. Then the
limiting behaviour of the dynamics is obtained by considering the limit of the functionals in (1.13).

The framework using the EDI formulation of gradient flows to obtain the evolutionary�-convergence
of gradient flows was first established by Sandier and Serfaty [49, 47]. In this setting, the key estimates
are the lower bounds of the free energy and the energy dissipations in terms of the metric velocity and
the metric slope. Many generalisations of the evolutionary convergence for generalised gradient flow
systems are developed by Mielke, Peletier and collaborators; see the concept of energy-dissipation-
principle (EDP) convergence of gradient flows in [4, 34], the concept of generalised tilt/contact EDP
convergence developed in [16, 38], and also the review [36].

Following the above general framework for evolutionary�-convergence of gradient flows, we pass the
limit in ε-EDI (1.13) by proving the lower bounds of all three functionals on the left-hand-side of (1.13):
the energy functional Eε, the time integrals of dissipation functionals ψε and ψ∗

ε
. The lower bounds of

the latter two, denoted as ψ and ψ∗, are still functionals in bilinear form and are convex conjugate of
each other and thus determines the limiting Wasserstein gradient flow with an effective Wasserstein
distance W; see the precise definition of these lower bounds in Theorem 4.1. The lower bound for ψ∗

ε

is obtained by using a Fisher information reformulation in terms of
√
ρε

πε
[2, 4] and a by now classical

�-convergence technique for an associated Dirichlet energy. On the other hand, the lower bound for ψε
is obtained by a relaxation via the Legendre transformation and an upper bound estimate for ψ∗

ε
. This

requires one to overcome some regularity issues brought by the oscillations in the energy functional Eε

and the solution curve ρε. This is achieved via a symmetric reformulation of the Fokker–Planck equation
in terms of the variable f ε := ρε

πε
.

We briefly mention some related references on Wasserstein gradient flow with multi-scale behaviours.
Modelling of Fokker–Planck equation as a gradient flow in Wasserstein space was first noted by Jordan–
Kinderlehrer–Otto [31]. They also show the convergence of a variational backward Euler scheme. There
are many other evolutionary problems that can be formulated using multi-scale Wasserstein gradient
flows; see for instance the porous medium equation [40] and more general aggregation-diffusion equa-
tions reviewed in ref. [14]. In [4], they use the evolutionary convergence of Wasserstein gradient flow
to analyse the mean field equation in a zero noise limit for a reversible drift-diffusion process. There
are also extensions for the zero noise limit from diffusion processes to chemical reactions described
by time-changed Poisson processes on countable states; see [37] for the reversible case using a dis-
crete Wasserstein gradient-flow approach and [24] for the irreversible case using a nonlinear semigroup
approach for Hamilton–Jacobi equations. Homogenisation of action functionals on the space of proba-
bility measures has also been studied in [27]. In addition, convergence of Wasserstein gradient flows has
been applied to related questions, which explore the mean-field limit and large deviation principle of
weakly interacting particles; cf. [19, 9] and some recent developments in refs. [15, 17]. Furthermore, a
similar convergence approach has also been used for generalised gradient flows and optimal transport on
graphs and their diffusive limits. In various discrete settings, we refer to [26] for Gromov–Hausdorff con-
vergence of discrete Wasserstein metrics, [20] for evolutionary �-convergence of finite volume scheme
for linear Fokker–Planck equation [22, 23], for the homogenisation of Wasserstein distance on peri-
odic graphs, and the recent works [50, 30, 28] for diffusive limits of some generalised gradient flows
on graph.

The remainder of this paper is outlined as follows. In Section 2, we introduce the inhomogeneous
Fokker–Planck and the ε-Wasserstein gradient flow in EDI form and describe our assumptions and
main results. In Section 3, we obtain some uniform regularity estimates and convergence results for the
ε-Wasserstein gradient flow. In Section 4, we pass the limit in the EDI form of the ε-Wasserstein gradient
flow by proving lower bounds for the free energy and two dissipation functionals; see Theorem 4.1. In
Section 5, we study the limiting gradient flow with respect to the induced limiting Wasserstein metric
and compare it with the usual Gromov–Hausdorff convergence of Wε.
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2. ε-system: inhomogeneous Fokker–Planck and generalised gradient flow

In this section, we introduce a spatially inhomogeneous Fokker–Planck equation, which, with fixed
ε > 0, can be recast as a generalised gradient flow in ε-Wasserstein space in terms of a total energy
given by a relative entropy. This Fokker–Planck equation is motivated by a drift-diffusion process with
inhomogeneous noise and drift that satisfy the fluctuation–dissipation relation. In Section 2.3, we choose
a pair of quadratic dissipation functionals (ψε,ψ∗

ε
) which are convex conjugate to each other to recast

the ε-Fokker–Planck equation as a generalised gradient flow in an EDI form. Then in Section 2.4, we
state and explain our main results on the convergence of the gradient-flow structure as ε→ 0 and the
resulting homogenised gradient flow of an effective free energy E with respect to an effective Wasserstein
metric W.

From now on, to avoid boundary effects, we work on periodic domain, denoted as � := T
n.

Given any smooth potential function Uε :�−→R, consider the following (free) energy functional
on P(�)

Eε(ρ) =
∫
�

Uε(x)ρ(x) dx +
∫
�

ρ(x) log ρ(x) dx. (2.1)

Let

πε(x) = e−Uε (x). (2.2)

Then (2.1) can be written in the form (1.12). The first variation
δEε

δρ
of Eε is then given by

δEε

δρ
(ρ) = log ρ + 1 + Uε = log

ρ

πε
+ 1. (2.3)

With a positive definite matrix Bε, we consider the following inhomogeneous Fokker–Planck equation

∂tρ
ε

t = ∇ ·
(
ρεt B−1

ε
∇ δEε

δρ
(ρεt )

)
= ∇ · (B−1

ε
∇ρεt + ρεt B−1

ε
∇Uε

)
. (2.4)

The above equation can be interpreted in two ways. One is to regard it as the Kolmogorov forward
equation of a drift-diffusion process with a multiplicative noise, while another as a gradient flow in a
Wasserstein space (P(�), Wε) with the cost function defined in (1.3). We describe both of these in the
following.

2.1. ε -Fokker–Planck equation (2.4) as a Kolmogorov equation

Consider a drift-diffusion process (Xt)t≥0, described by the following stochastic differential equation

dXt = b(Xt) dt + σ (Xt) ∗ dBt, (2.5)

where Bt is a one-dimensional Brownian motion, and

b(x) = −B−1
ε

(x)∇Uε(x), and σ (x) =√
2B−1

ε
(x). (2.6)

Here the multiplicative noise σ (Xt) ∗ dBt is in the backward Ito differential sense, which is equivalent
to the forward Ito differential by adding an additional drift term

σ (Xt) ∗ dBt = 1

2
∇ · (σσ T)(Xt) dt + σ (Xt) dBt.
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By Ito’s formula, the generator of the process (Xt)t≥0 is derived as follows. For any test function ϕ ∈
C2

b(Rn) and initial condition X0 = x, we compute

lim
t→0+

E
x[ϕ(Xt)] − ϕ(x)

t
= lim

t→0+
E

x 1

t

∫ t

0

[∇ϕ(Xs) · b(Xs)

+ 1

2
∇2ϕ(Xs) : (σσ T)(Xs) + 1

2
(∇ · (σσ T)(Xs)) · ∇ϕ(Xs)

]
ds

=∇ϕ(x) · b(x) + 1

2
∇ · (σσ T∇ϕ(x)) =: Lϕ.

(2.7)

Thus the corresponding Fokker–Planck equation to (2.5) is given by

∂tρ
ε

t = L∗ρεt

:= 1

2
∇ · (σσ T∇ρεt

)− ∇ · (ρεt b
)

= ∇ · (B−1
ε

(x)∇ρεt (x)
)+ ∇ · (ρεt (x)B−1

ε
(x)∇Uε(x)), (2.8)

which is exactly (2.4). Note that the πε defined in (2.2), which is in the form of a Gibbs measure, is in
fact the unique stationary distribution of (2.8), L∗πε = 0.

We remark that in the above drift-diffusion process, we used the Ito backward differential to ensure
that our process (Xt)t≥0 with a multiplicative noise is reversible so that one can have a gradient flow struc-
ture for the corresponding Fokker–Planck equation. More precisely, we have that the diffusion process
(Xt)t≥0 (2.5) starting from X0 ∼ πε is reversible in the sense that the time reversed process has the same
distribution, i.e.

E(ϕ1(Xt)ϕ2(X0)|X0 ∼ πε) =E(ϕ1(X0)ϕ2(Xt)|X0 ∼ πε), ∀ϕ1, ϕ2 ∈ C∞
0 (Rn), ∀t> 0. (2.9)

This condition is equivalent to the symmetry of the generator L in L2(πε); cf. [25].

2.2. ε -Fokker-Planck equation (2.4) as a gradient flow in (P(�), Wε)

Following Otto’s formal Riemannian calculus on Wasserstein space [40], we now interpret the Fokker–
Planck equation as a (negative) gradient flow in (P(�), Wε). For this purpose, we need to compute the
Wasserstein gradient ∇WεEε of Eε in (P(�), Wε).

Given any absolutely continuous curve ρ̃t in (P(�), Wε) given by ρ̃t := (χt)#ρ with ρ̃t=0 = ρ, where
χt is the flow map induced by a smooth velocity field vt. Then ρ̃t satisfies the continuity equation

∂tρ̃t + ∇ · (ρ̃tvt)= 0.

With this, we compute the first variation of Eε

d

dt

∣∣∣
t=0

Eε(ρ̃t) =
∫
�

δEε

δρ
∂tρ̃t

∣∣
t=0

dx =
∫
�

δEε

δρ

(−∇ · (ρ̃tvt)
∣∣

t=0

)
dx =

∫
�

〈
∇ δEε

δρ
, v0

〉
ρ dx. (2.10)

We will use the above to identify the gradient ∇WεEε of Eε with respect to a Riemannian metric 〈·, ·〉TP ,TP
on the tangent plane TP of (P(�), Wε).

Based on (1.5), we have that for any ρ ∈P(�) and s1, s2 ∈ TP at ρ, the metric is given by
〈
s1, s2

〉
TP ,TP

:=
∫
ρ(x)

〈
B−1
ε

(x)∇ϕ1(x), ∇ϕ2(x)
〉

dx, where si = −∇ · (ρB−1
ε

∇ϕi), i = 1, 2. (2.11)

A word is in place here to explain going from vt in (1.5) to ∇ϕ above. At a fixed t and ρt, upon

minimising
∫
�

ρt〈Bε(x)vt, vt〉 dx over vt subject to −∇ · (ρtvt) = s

(
:= ∂ρt

∂t

)
, we have that

∫
�

ρt〈Bε(x)vt, ξ 〉 dx = 0 for all smooth vector field ξ satisfying −∇ · (ρtξ ) = 0.
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Hence, Bεvt is orthogonal to all divergence free vector field of the form ρtξ . We then conclude that Bεvt

must be the gradient of some (potential) function ϕ. Thus, vt can be represented as vt = B−1
ε

∇ϕ.
With the above, we express the first variation of Eε using ∇WεEε as follows:

d

dt

∣∣∣
t=0

Eε(ρ̃t) =
〈
∇WεEε, ∂tρ̃t

∣∣
t=0

〉
TP ,TP

=
∫
�

ρ〈B−1
ε

∇ϕ̃, ∇ϕ0〉 dx, (2.12)

where

∂tρ̃t

∣∣
t=0

= −∇ · (ρB−1
ε

∇ϕ0

)
and ∇WεEε(ρ) = −∇ · (ρB−1

ε
∇ϕ̃) . (2.13)

Comparing (2.10) with (2.12), we have∫
�

〈
∇ δEε

δρ
, v0

〉
ρ dx =

∫
�

ρ
〈
B−1
ε

∇ϕ̃, ∇ϕ0

〉
dx

which is set to hold for any v0 = B−1
ε

∇ϕ0. Hence, ∇ϕ̃ = ∇ δEε

δρ
. Thus, the second part of (2.13) leads to

the following identification of ∇WεE(ρ),

∇WεEε(ρ) := −∇ ·
(
ρB−1

ε
∇ δEε

δρ

)
= −∇ ·

(
ρB−1

ε
∇ log

ρ

πε

)
. (2.14)

Hence, the inhomogeneous Fokker–Planck equation (2.4) indeed can be written as a gradient flow of Eε

with respect to the ε-Wasserstein metric Wε, i.e.,

∂tρ
ε

t = −∇WεEε(ρ
ε

t ) = ∇ ·
(
ρεB−1

ε
∇ log

ρε

πε

)
. (2.15)

We remark that in general an equation may have many different gradient flow structures with respect
to the same free energy Eε, cf. [38]. However, in this paper, we restrict ourselves within the framework
of Wasserstein gradient flows as it fits naturally to the evolution in probability space.

2.3. ε -generalised gradient flow in energy-dissipation inequality (EDI) form

As mentioned previously, in order to study the limiting gradient flow structure as the small parameter
ε→ 0 in our ε-gradient flow (2.15), we will recast it in an energy-dissipation inequality (EDI) form
(1.13) that is shown to be equivalent to the original ε-gradient flow system.

Denote the ε-dissipation on the tangent plane TP as a functional ψε : P× TP →R defined by

ψε(ρ, s) := 1

2

∫
�

〈∇u, B−1
ε

∇u〉ρ dx, with s = −∇ · (ρB−1
ε

∇u
)

, (2.16)

and the ε-dissipation on the cotangent plane T∗
P as a functional ψ∗

ε
: P× T∗

P →R defined by

ψ∗
ε
(ρ, ξ ) := 1

2

∫
�

〈∇ξ , B−1
ε

∇ξ 〉ρ dx. (2.17)

It is easy to check that

ψε(ρ, s) = sup
ξ∈T∗

ρ

{
〈ξ , s〉T∗

ρ ,Tρ −ψ∗
ε
(ρ, ξ )

}
=〈ξ ∗, s〉T∗

ρ ,Tρ −ψ∗
ε
(ρ, ξ ∗) with s = −∇ · (ρB−1

ε
∇ξ ∗)

=1

2

∫
�

〈∇ξ ∗, B−1
ε

∇ξ ∗〉ρ dx.

(2.18)

Applying the Fenchel–Young inequality to the convex functionals ψε and ψ∗
ε
, we have

〈ξ , s〉 ≤ψ∗
ε
(ρ, ξ ) +ψε(ρ, s), for all ξ ∈ T∗

ρ
, and s ∈ Tρ , (2.19)

with equality holds if and only if ξ ∈ ∂sψε(ρ, s) and s ∈ ∂ξψ∗
ε
(ρ, ξ ). Here ∂sψε(ρ, s) and ∂ξψ∗

ε
(ρ, ξ ) refer

to the subdifferentials of ψε and ψ∗
ε

on Tρ and T∗
ρ
, respectively, at a fixed ρ. We also note the following.

https://doi.org/10.1017/S0956792525100077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100077


8 Y. Gao and N.K. Yip

(1) For all η ∈ T∗
P, we have 〈

∂ξψ
∗
ε
(ρ, ξ ), η

〉
= lim

τ→0

d

dτ
ψ∗
ε
(ρ, ξ + τη)

∣∣∣∣
τ=0

=
∫

〈∇ξ , B−1
ε

∇η〉ρ dx =
∫

−η∇ · (ρB−1
ε

∇ξ ) dx

so that ∂ξψ∗
ε
(ρ, ξ ) = −∇ · (ρB−1

ε
∇ξ ). Hence, s ∈ ∂ξψ∗

ε
(ρ, ξ ) means s = −∇ · (ρB−1

ε
∇ξ ).

(2) For all σ ∈ TP, we have 〈
∂sψε(ρ, s), σ

〉
= lim

τ→0

d

dτ
ψε(ρ, s + τσ )

∣∣∣∣
τ=0

=
∫

〈∇u, B−1
ε

∇ω〉ρ dx =
∫

−u∇ · (ρB−1
ε

∇ω) dx(
where s = −∇ · (ρB−1

ε
∇u), σ = −∇ · (ρB−1

ε
∇ω)

)
=
∫

uσ dx

so that ∂sψε(ρ, s) = u. Hence, ξ ∈ ∂sψε(ρ, s) means ξ satisfies s = −∇ · (ρB−1
ε

∇ξ ).

With the above, we now reformulate (2.15) in the form of an EDI. To this end, we compute,
d

dt
Eε(ρ

ε

t ) =
〈
δEε

δρ
, ∂tρ

ε

t

〉
, or

d

dt
Eε(ρ

ε

t ) +
〈
−δEε

δρ
, ∂tρ

ε

t

〉
= 0. (2.20)

By (2.19), ∂tρ
ε
t = −∇WεEε(ρεt ) = ∇ ·

(
ρB−1

ε
∇ δEε

δρ

)
if and only if

ψε(ρ
ε

τ
, ∂τρ

ε

τ
) +ψ∗

ε

(
ρε
τ
, −δEε

δρ
(ρε

τ
)

)
≤
〈
−δEε

δρ
, ∂tρ

ε

t

〉
.

Hence, upon integrating (2.20), our gradient flow (2.15) is equivalent to the following:

Eε(ρ
ε

t ) +
∫ t

0

[
ψε(ρ

ε

τ
, ∂τρ

ε

τ
) +ψ∗

ε

(
ρε
τ
, −δEε

δρ
(ρε

τ
)

)]
dτ ≤ Eε(ρ

ε

0 ). (2.21)

We note that the very first step, (2.20) is a crucial chain rule of differentiation. This is justified in our
paper due to the regularity property of our energy functional and the solution. Precise statements will
be given in Section 3. In general (for example, discrete or general metric space) settings, the absolute
continuity of Eε(ρεt ) (in time) and the validity of the chain rule (2.20) need to be proved; cf., [29, 28].

Before leaving this section, for convenience, we write down the following explicit expressions.

ψ∗
ε

(
ρε
τ
, −δEε

δρ
(ρε

τ
)

)
=
∫
�

〈
∇
(
δEε

δρ

)
, B−1

ε
∇
(
δEε

δρ

)〉
ρεt dx

= 1

2

∫
�

〈
∇ log

ρε
τ

πε
, B−1

ε
∇ log

ρε
τ

πε

〉
ρε
τ

dx, (2.22)

and

ψε
(
ρε
τ
, ∂τρ

ε

τ

)= 1

2

∫
�

〈∇u, B−1
ε

∇u〉ρε
τ

dx, with − ∇ · (ρε
τ
B−1
ε

∇u
)= ∂τρ

ε

τ
. (2.23)

2.4. Main results

Briefly stated, our main result is that the gradient-flow structure is preserved in the limit, i.e., (2.15)
converges to a limiting gradient flow. More precisely, the solution ρεt of (2.15) converges (weakly) to ρt
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that solves a gradient flow with respect to a limiting Wasserstein distance W,

∂tρt = −∇WE(ρt) = ∇ ·
(
ρtB

−1∇ log
ρt

π

)
. (2.24)

In the above, the limiting energy is given as

E(ρ) = KL(ρ||π) =
∫
�

ρ log
ρ

π
dx, (2.25)

where the π is simply the spatial average of πε with respect to some fast variable – see (2.33) below.
The matrix B is obtained by taking appropriate average of Bε over the fast variable weighted by the
solution of a cell problem (A.9) or equivalently, by considering the �-limit of a variational functional
(Theorem 4.2). The Wasserstein distance W is related to B just as the way Wε is related to Bε – see
Section 5.1.

Similar to (2.21), (2.16), and (2.17), equation (2.24) is formulated as an EDI, i.e.,

E(ρt) +
∫ t

0

[
ψ(ρτ , ∂τρτ ) +ψ∗

(
ρτ , −δE

δρ
(ρτ )

)]
dτ ≤ E(ρ0), (2.26)

where ψ∗ : P× T∗
P →R is the limiting dissipation functional on the cotangent plane T∗

P given by

ψ∗(ρ, ξ ) := 1

2

∫
�

〈∇ξ , B̄−1∇ξ 〉ρ dx, (2.27)

and ψ : P× TP →R is the limiting dissipation functional on the tangent plane TP given by

ψ(ρ, s) := 1

2

∫
�

〈∇u, B̄−1∇u〉ρ dx, with s = −∇ · (ρB̄−1∇u
)

. (2.28)

The precise statement of the convergence of (2.21) to (2.26) will be given in Section 4, Theorem 4.1.
Curiously, under the current setting, W is not the Gromov–Hausdorff limit WGH of Wε which is the

common mode of convergence for metric spaces, cf. [53, 26, 21]. In Section 5.2, We have constructed
examples such that W is strictly bigger than WGH. We believe that this statement is true for general
heterogeneous media.

Before proceeding further, we introduce the following notations and conventions. As we will often
consider functions that oscillate on a small length scale, 0< ε� 1, it is convenient to introduce the
following fast variable

y = x

ε
. (2.29)

The domain for y is taken to be the n-dimensional torus T
n when the oscillatory functions are

1-periodic in y. The notation A means that it is derived from some averaging of A over the fast variable
y. For time-dependent problems, we often deal with functions defined on both space and time variables
x, t. For ease of notation, given a function f = f (x, t), we often use ft to denote ft( · ), i.e., the slice of f at
a fixed time t. We will use⇀ and −→ to denote weak and strong convergence in some function spaces.
Two common spaces used are the space of probability measures P(�) and Lp(�) spaces. The value of
p will depend on contexts. For the convergence of a sequence of functions fε as ε→ 0, we will use the
same notation even if the convergence only holds upon extraction of subsequence. (The convergence
can be established for the whole sequence if the limiting equation has unique solution which is the case
for our linear Fokker–Planck equation (2.24).)

Next we state the main assumptions for our results. Some of these are made only for simplicity. They
can be relaxed if we choose to use more technical tools.

(i) Recall that the domain � is taken to be an n-dimensional torus Tn. This is not to be confused with
the Tn for the fast variable y. We note that the boundedness of the domain can be removed, allowing
one to work in P2(Rn) if a confinement potential U is incorporated in the dynamics. Other boundary
conditions, such as Dirichlet or no-flux conditions, may also be considered.
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(ii) For Bε, we consider

Bε(x) = B
( x

ε

)
, or Bε(x) = B(y), (2.30)

where B( · ) is 1-periodic. Furthermore, B( · ) is bounded and uniformly positive definite, i.e., there
are C1, C2 > 0 such that for all y ∈T

n, it holds that

C1I ≤ B(y) ≤ C2I. (2.31)

This form of Bε can certainly be generalised to allow for dependence on the slow variable: Bε(x) =
B(x, x

ε
). For simplicity, we assume further that B is smooth in y.

(iii) For πε, we consider the following form of separation of length scales:

πε(x) = π
(

x,
x

ε

)
. (2.32)

In the above, π is 1-periodic in the fast variable y = x

ε
. We further assume that π is smooth in both

x and y and is bounded away from zero and from above uniformly in ε > 0. The following notation
referring to an averaged version of π will be used in this paper:

π (x) =
∫
π (x, y) dy. (2.33)

As concrete examples, πε can be taken as

π I
ε
(x) = π0(x) + π1

(
x,

x

ε

)
, or π II

ε
(x) = π0(x) + επ1

(
x,

x

ε

)
. (2.34)

Then π I
ε

and π II
ε

converge as follow:

π I
ε
(x)⇀π I(x) := π0(x) +

∫
Tn

π1(x, y) dy, and π II
ε

(x) −→ π II(x) := π0(x). (2.35)

We thus call π I
ε

the oscillatory case while π II
ε

the uniform case. (We refer to the work [19] for large
deviations for multiscale diffusion with π II

ε
.)

(iv) The initial data ρε0 is bounded away from zero and from above uniformly in ε > 0. It is assumed to
be well-prepared in the following sense,

there is a ρ0 such that as ε→ 0, it holds ρε0 ⇀ρ0 and Eε(ρε0 ) → E(ρ0), as ε→ 0, (2.36)

where Eε and E are given by (2.1) and (2.25). More precise smoothness requirements on ρ0 will be
listed in Lemmas 3.1, 3.3, and Corollaries 3.2 and 3.4.

We have the following remarks about our results.

Remark 2.1.

(1) As π II
ε

can be treated as a special case of π I
ε
, or more generally, of πε, we will concentrate on

the proof for πε. Our result is also consistent with the statement obtained by using the asymptotic
expansion described in Appendix A. At the end of that section, we also make some remarks about
the revised statement for π II

ε
.

(2) The approach we take resembles the work of Forkert–Maas–Portinale [20] on the convergence of a
finite volume scheme for a Fokker–Planck equation. By and large, the framework of their (numerical)
approximation enjoys stronger regularity, while our current problem concentrates on the oscillation
of the underlying medium.

3. Some a-priori estimates

In order to study the asymptotic behaviour as ε→ 0, we first establish some a-priori estimates for our
ε-gradient flow system (2.4) (or (2.15)). These would then give us the space-time compactness and
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convergence. These variational estimates for linear parabolic equations are standard but we give a brief
proof for completeness.

First, we recast (2.4) as

∂tρ
ε

t = ∇ ·
(
πεB

−1
ε

∇ ρ
ε
t

πε

)
. (3.1)

Denote f εt := ρεt

πε
. Then f εt satisfies the following backward equation

∂tf
ε

t = 1

πε
∇ · (πεB−1

ε
∇f εt

) =: Lε(f
ε

t ). (3.2)

It is easy to verify that Lε is self-adjoint in L2(πε), i.e.,

〈Lεu, v〉πε = 〈u, Lεv〉πε , ∀u, v ∈ L2(πε), (3.3)

where 〈·, ·〉πε denotes the πε-weighted L2 inner product, 〈u, v〉πε :=
∫
�

u(x)v(x)πε(x) dx.
We recall here the standing assumptions of uniform positive definiteness of Bε and uniform positivity

and boundedness of πε as stated in (2.30) and (2.32) in Section 2.4. We then have the following uniform
estimates for f εt .

Lemma 3.1. Let f ε0 be the initial data for (3.2). We define,

A0 := sup
ε>0

∫
�

(f ε0 )2πε dx, (3.4)

B0 := sup
ε>0

∫
�

〈∇f ε0 , B−1
ε
πε∇f ε0 〉 dx. (3.5)

Let 0< T <∞ be given. We have the following statements.

(1) If 0<m0 < inf f ε0 <M0 <∞ on � for some finite positive constants m0 and M0, then m0 < inf f εt
<M0 for all t> 0.

(2) If A0 <∞, then f ε ∈ L∞((0, T);L2(�))
⋂

L2((0, T);H1(�)) with the following uniform-in-ε bound:
for all 0< t< T ,

1

2
||f εt ||2

πε
+
∫ t

0

∫
�

〈∇f εs , B−1
ε
πε∇f εs 〉 dx ds = 1

2
||f ε0 ||2

πε
≤ A0. (3.6)

(3) If B0 <∞ (which by Poincare inequality implies A0 <∞), then

f ε ∈ L∞((0, T); H1(�))
⋂

H1((0, T); L2(�))

with the following uniform-in-ε bound: for all 0< t< T ,
1

2

∫
�

〈∇f ε0 , B−1
ε
πε∇f ε0 〉 dx +

∫ t

0

∫
�

(∂sf
ε

s )2πε dx ds = 1

2

∫
�

〈∇f ε0 , B−1
ε
πε∇f ε0 〉 dx ≤ B0

2
. (3.7)

From (3.2) and
∫ t

0

∫
�

(∂sf
ε

s )2πε dx ds ≤ B0

2
, we also have

sup
ε>0

∫ T

0

∫
�

(
∇ · (B−1

ε
πε∇f εs

))2

dx ds<∞. (3.8)

Proof. Note that

∂tf
ε

t = B−1
ε

: D2f εt + 1

πε

〈∇(B−1
ε
πε), ∇f εt

〉
.

By the positive definitenss of Bε, statement (1) then follows directly from maximum principle.
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Next, both (3.6) and (3.7) follows from simple energy identity. For the former, we compute
d

dt

1

2
||f εt ||2

πε
=
∫
�

f εt ∂tf
ε

t πε dx = −
∫
�

〈∇f εt , B−1
ε
πε∇f εt 〉 dx.

Integration in time from 0 to t gives (3.6).
For (3.7), we compute

d

dt

1

2

∫
�

〈∇f εt , B−1
ε
πε∇f εt 〉 dx =

∫
�

〈∇∂tf
ε

t , B−1
ε
πε∇f εt 〉 dx

= −
∫
�

∂tf
ε

t ∇ · (B−1
ε
πε∇f εt

)
dx = −

∫
�

(∂tf
ε

t )2πε dx.

Integration in time from 0 to t again gives the result. Estimate (3.8) follows from definition.

The above and Fubini’s Theorem immediately leads to the following compactness results.

Corollary 3.2. If B0 <∞, then there is a subsequence f ε and an f ∈ L2(0, T; L2(�)) such that f ε −→ f
in L2(0, T; L2(�)), i.e., ∫ T

0

∫
�

|f εt − ft|2 dx dt → 0. (3.9)

Furthermore, we have ∫
�

|f εt − ft|2 dx → 0 for a.e. t ∈ [0, T]. (3.10)

For our application, we will also need some regularity estimates for the time derivative of f ε. Define
hεt := ∂tf εt . Then it satisfies the same equation (3.2), i.e.,

∂th
ε

t = 1

πε
∇ · (πεB−1

ε
∇hεt

) =: Lε(h
ε

t ). (3.11)

As a direct application of Lemma 3.1 and Corollary 3.2, we have the following lemma and corollary.

Lemma 3.3. Let hε0 = ∂tf εt |t=0 be the initial data for (3.11). We define,

C0 := sup
ε>0

∫
�

(hε0)
2πε dx

(
= sup

ε>0

∫
�

(∂tf
ε

0 )2πε dx

)
, (3.12)

D0 := sup
ε>0

∫
�

〈∇hε0, B−1
ε
πε∇hε0〉 dx

(
= sup

ε>0

∫
�

〈∇(∂tf
ε

0 ), B−1
ε
πε∇(∂tf

ε

0 )〉 dx

)
. (3.13)

Let 0< T <∞ be given. We have the following statements.

(1) If C0 <∞, then hε ∈ L∞((0, T); L2(�))
⋂

L2((0, T); H1(�)). In particular, for all 0< t< T , we have
the following identity,

1

2
||hεt ||2

πε
+
∫ t

0

∫
�

〈∇hεs , B−1
ε
πε∇hεs〉 dx ds = 1

2
||hε0||2

πε
. (3.14)

(2) If D0 <∞, then hε ∈ L∞((0, T); H1(�))
⋂

H1((0, T); L2(�)). In particular, for all 0< t< T , we have
the following identity,

1

2

∫
�

〈∇hεt , B−1
ε
πε∇hεt 〉 dx +

∫ t

0

∫
�

(∂sh
ε

s )
2πε dx ds = 1

2

∫
�

〈∇hε0, B−1
ε
πε∇hε0〉 dx (3.15)

Corollary 3.4. If D0 <∞, then there is a subsequence hε and an h ∈ L2(0, T; L2(�) such that hε −→ h
in L2(0, T; L2(�)), i.e. ∫ T

0

∫
�

|hεt − ht|2 dx dt → 0. (3.16)
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Furthermore, we have ∫
�

|hεt − ht|2 dx → 0, for a.e. t ∈ [0, T]. (3.17)

Recall Assumption (iii) in Section 2.4 for the invariant measure πε. For the convenience of our
upcoming proof, we collect the necessary convergence results in the following lemma.

Lemma 3.5. Suppose A0, B0, C0 and D0 <∞. Then (from Lemmas 3.1 and 3.3) we have

f ε ∈ L∞((0, T); H1(�))
⋂

H1((0, T); L2(�)), and ∂tf
ε ∈ L∞((0, T); H1(�))

⋂
H1((0, T); L2(�)).

(3.18)
Furthermore (from Corollaries 3.2 and 3.4), up to ε-subsequence, we have

f ε −→ f , and ∂tf
ε −→ ∂tf in L2((0, T); L2(�)). (3.19)

Upon defining ρt = ftπ , we have
ρε

πε
( = f ε) −→ ρ

π
( = f ) in L2((0, T); L2(�)), (3.20)

ρε ⇀ ρ in L2((0, T); L2(�)), (3.21)and
∂tρ

ε

πε
( = ∂tf

ε) −→ ∂tρ

π
( = ∂tf ) in L2((0, T); L2(�)), (3.22)

∂tρ
ε ⇀ ∂tρ in L2((0, T); L2(�)). (3.23)

Instead of strong and weak convergence in L2(0, T; L2(�)), by (3.10) and (3.17), statements (3.19) –
(3.23) also hold with the same respective strong and weak topologies in L2(�) for a.e. t ∈ [0, T].

Remark 3.6. Note that currently our approach does require a high degree of regularity for the initial
data. Its existence and construction would require the characterisation of precise oscillations of the
solution which in principle can be done by considering second and higher order cell problems. However,
we believe this requirement can be much relaxed by means of parabolic regularity. For example, if
A0 <∞, then f εt ∈ H1(�) for some t> 0 and if B0 <∞, then ∂tf εt ∈ L2(�) for some t> 0. This can
be iterated due to the variational structure of equation (3.2). Alternatively, we can opt to utilise some
technical results similar to [31, p.14, steps (a – c)] and [20, Proposition 4.4] in which the initial data
even belongs to L1(�). For simplicity, in this paper, we do not pursue this route, as we consider it beyond
the scope of homogenisation which is our key motivation.

The final statement in this section gives the time continuity of ρεt in the standard Wasserstein space
(P(�), W2) (1.8).

Lemma 3.7. Assume Eε(ρε0 )<+∞. For any T > 0, let ρεt , t ∈ [0, T] be a solution to the ε-gradient flow
system (2.21). Then there is 0<C<∞ such that

W2
2 (ρεt , ρεs ) ≤ C|t − s|, ∀ 0 ≤ s ≤ t ≤ T , (3.24)

where W2(·, ·) is the standard W2-distance. Consequently, there exist a subsequence ρε and ρ ∈
C([0, T]; P(�)) such that

W2
2 (ρεt , ρt) → 0, uniformly in t ∈ [0, T]. (3.25)

Proof. First, since ρεt , t ∈ [0, T] satisfies (2.21) and Eε(ρε0 )<+∞, we have for any 0 ≤ s ≤ t ≤ T ,∫ t

s

ψε(ρ
ε

τ
, ∂τρ

ε

τ
) dτ <+∞. (3.26)
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This means for the curve ρεt , t ∈ [0, T] with ∂tρ
ε
t = −∇ · (ρεt B−1

ε
∇uεt

)
, we have∫ t

s

∫
�

1

2
〈∇uε

τ
, B−1

ε
∇uε

τ
〉ρε

τ
dx dτ <+∞. (3.27)

For this curve, the velocity in the continuity equation is given by vεt = B−1
ε

∇uεt . From [1, Theorem 17.2],
we have

W2
2 (ρεt , ρεs ) ≤ |t − s|

∫ t

s

∫
�

|vε
τ
|2ρε

τ
dx dτ =|t − s|

∫ t

s

∫
�

|B−1
ε

∇uε
τ
|2ρε

τ
dx dτ

�|t − s|
∫ t

s

∫
�

〈∇uε
τ
, B−1

ε
∇uε

τ
〉ρε

τ
dx dτ .

(3.28)

This gives the equi-continuity of ρεt in (P(�), W2).
Second, for any t fixed, as

∫
�
ρεt dx = 1 and � is compact, by [[ABS+21],Theorem 8.8], the weak∗

convergence of ρεt ∈P to some ρt ∈P implies that

W2(ρεt , ρt) → 0. (3.29)

We then complete the proof by applying the Arzelá–Ascoli Theorem in (P(�), W2).

4. Passing limit in EDI formulation of ε-gradient flow

In this section, we prove that the EDI formulation (2.21) of ε-gradient flow (2.15) converges to the
limiting EDI (2.26). To this end, we need to prove three lower bounds for the functionals (2.1), (2.16),
and (2.17) on the left-hand-side of (2.21). Recall the definitions of Ē,ψ ,ψ∗ in Section 2.4. The lower
bounds estimates are stated in the following.

Theorem 4.1. Assume the initial data ρε0 satisfies the assumptions of Lemma 3.5. Let further ρ0 be the
limit of ρε0 in (P(�), W2) and ρε0 be well-prepared in the sense of (2.36). Then

(i) there exists a subsequence ρε and ρ ∈ C([0, T]; L2(�)) such that (3.25) holds;
(ii) for a.e. t ∈ [0, T], the lower bound for free energy holds

lim inf
ε→0

Eε(ρ
ε

t ) ≥ E(ρt); (4.1)

(iii) for any t ∈ [0, T], the lower bound for the dissipation on the cotangent plane holds

lim inf
ε→0

∫ t

0

ψ∗
ε

(
ρε
τ
, −δEε

δρ
(ρε

τ
)

)
dτ ≥

∫ t

0

ψ∗
(
ρτ , −δE

δρ
(ρτ )

)
dτ ; (4.2)

(iv) for any t ∈ [0, T], the lower bound for the dissipation on the tangent plane holds

lim inf
ε→0

∫ t

0

ψε(ρ
ε

τ
, ∂τρ

ε

τ
) dτ ≥

∫ t

0

ψ(ρτ , ∂τρτ ) dτ . (4.3)

As mentioned before, our approach relies on the idea of convergence of functionals in a variational
setting. In particular, we make use of the following result which is a special case of by now classical
results of �-convergence. See for example, [35, Theorems 4.1, 4.4], and also [13, 12, 18] for more
detailed explanations.

Theorem 4.2 (�-conv). Let � be an open bounded domain of Rn and Aε( · ) = A(·, ·
ε
) be a symmetric

positive definite matrix. Consider the functional

Fε(v) =
∫
�

〈
A
(

x,
x

ε

)
∇v, ∇v

〉
dx, v ∈ H1

0 (�) + w (4.4)

where w ∈ H1(�) is given. Then Fε �-converges in L2(�) to the following functional

F(v) =
∫
�

〈
A(x)∇v, ∇v

〉
dx, v ∈ H1

0(�) + w. (4.5)
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In detail,

(1) for any vε ∈ H1
0(�) + w that converges to v ∈ H1

0 (�) + w in L2(�), it holds that

lim inf
ε→0

Fε(vε) ≥F(v); (4.6)

(2) for any v ∈ H1
0 (�) + w, there exists vε ∈ H1

0 (�) + w that converges to v in L2(�), such that

lim
ε→0

Fε(vε) =F(v). (4.7)

Furthermore, the effective matrix A can be found by the following variational formula: for any p ∈R
n,

〈
A(x)p, p

〉= inf

{∫
Tn

〈A (x, y) (∇v + p), (∇v + p)〉 dy, v ∈ H1(Tn)

}
. (4.8)

As an application, we will apply the above result to the case �=T
n and

A(x, y) = D(x, y) ( = π (x, y)B−1(y)) (see (A.1)).

The resultant formula for A(x) is given by D + G; see the expressions of D and G in (A.8).
In Appendix A, we derive the same formula using asymptotic analysis.

Proof of (4.1). This statement follows directly from [2, Lemma 9.4.3] which says that the entropy
functional is jointly lower-semicontinuous with respect to the weak convergence of ρεt and πε. In our
case, it also follows simply from the strong convergence of f εt (together with the fact that f εt is uniformly
bounded from above and away from zero):

lim
ε→0

∫
�

ρεt log
ρεt

πε
dx = lim

ε→0

∫
�

f εt ( log f εt )πε dx =
∫
�

ft( log ft)π dx =
∫
�

ρt log
ρt

π
dx.

Proof of (4.2) (time independence case). Let τ ∈ [0, T] be fixed. We will prove that

lim inf
ε→0

ψ∗
ε
(ρε

τ
, − log

ρε
τ

πε
) ≥ψ∗

(
ρτ , − log

ρτ

π

)
. (4.9)

We re-write the functional ψ∗ in the following way,

ψ∗
ε
(ρε

τ
, − log

ρε
τ

πε
) =1

2

∫
�

〈
∇ log

ρε
τ

πε
, B−1

ε
∇ log

ρε
τ

πε

〉
ρε
τ

dx

=2
∫
�

〈
∇
√
ρε
τ

πε
, B−1

ε
πε∇

√
ρε
τ

πε

〉
dx

=2
∫
�

〈∇wε

τ
, Dε∇wε

τ

〉
dx,

where

wε

τ
:= √

f ε
τ
, and Dε = B−1

ε
πε.

As f ε
τ

→ fτ = ρτ

π
strongly in Lp(�) for any p ≥ 1, we have wε

τ
→ wτ := √

fτ =√
ρτ

π
in L2(�). Now we can

invoke Theorem 4.2 to deduce that

lim inf
ε→0

2
∫
�

〈∇wε

τ
, Dε∇wε

τ

〉
dx

≥ 2
∫
�

〈∇wτ , (D + G)∇wτ 〉 dx = 2
∫
�

〈
∇√fτ , (D + G)∇√fτ

〉
dx

= 2
∫
�

〈
∇
√
ρτ

π
, (D + G)∇

√
ρτ

π

〉
dx = 1

2

∫
�

〈
∇ log

ρτ

π
,

(
D + G

π

)
∇ log

ρτ

π

〉
ρτ dx

= 1

2

∫
�

〈
∇ log

ρτ

π
, B

−1∇ log
ρτ

π

〉
ρτ dx =ψ∗

(
ρτ , − log

ρτ

π

)
,
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concluding the result (4.9), with the identification B =
(

D+G
π

)−1

, from (A.9).

Proof of (4.3) (time independence case). Here we establish

lim inf
ε→0

ψε(ρ
ε, sε) ≥ψ(ρ, s) (4.10)

for any ρε ⇀ ρ in L1(�) and sε ⇀ s in L2(�) with the property that

f ε = ρε

πε
−→ f = ρ

π
in L2(�).

Using the definition of ψε, we have

ψε(ρ
ε, sε) = sup

ξ∈L2(�)

{∫
�

ξsε dx − 1

2

∫
�

〈∇ξ , B−1
ε

∇ξ 〉ρε dx

}
(4.11)

and likewise,

ψ(ρ, s) = sup
ξ∈L2(�)

{∫
�

ξs dx − 1

2

∫
�

〈∇ξ , B̄−1∇ξ 〉ρ dx

}
. (4.12)

Note that the supremum in both definitions can be attained. In particular, there is a ξ̃ such that

ψ(ρ, s) =
∫
�

ξ̃s dx − 1

2

∫
�

〈∇ ξ̃ , B̄−1∇ ξ̃ 〉ρ dx where s = −∇ ·
(
ρB̄−1∇ ξ̃

)
. (4.13)

Next we make use of an approximating sequence ξ̃ ε ⇀ ξ̃ in H1(�) (and hence ξ̃ ε → ξ̃ in L2(�)) such
that

lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, B−1
ε

∇ ξ̃ ε〉ρε dx = 1

2

∫
�

〈∇ ξ̃ , B
−1∇ ξ̃ 〉ρ dx. (4.14)

The above is equivalent to

lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f ε dx = 1

2

∫
�

〈∇ ξ̃ , (D + G)∇ ξ̃〉f dx. (4.15)

The construction of ξ̃ ε can essentially be given by Theorem 4.2 if we set Aε = Dεf ε. But in order to
separate the dependence between Dε and f ε, a different argument is needed. We will provide the details
in Appendix B.

Now by the fact that ξ̃ ε −→ ξ̃ in L2(�), together with the assumption sε ⇀ s in L2(�), we have∫
�

ξ̃ εsε dx −→
∫
�

ξ̃s dx.

Then (4.15) implies that

ψ(ρ, s) =
∫
�

ξ̃s dx − 1

2

∫
�

〈∇ ξ̃ , B
−1∇ ξ̃ 〉ρ dx

= lim
ε→0

{∫
�

ξ̃ εsε dx − 1

2

∫
�

〈∇ ξ̃ ε, B−1
ε

∇ ξ̃ ε〉ρε dx

}

≤ lim inf
ε→0

[
sup
ξ

{∫
�

ξsε dx − 1

2

∫
�

〈∇ξ , B−1
ε

∇ξ 〉ρε dx

}]
≤ lim inf

ε→0
ψ(ρε, sε),

(4.16)

which completes the proof for (4.16).

Proof of (4.2) and (4.3): time dependent case. To extend the time independent case to the time depen-
dent case and finish the proofs of lower bounds (4.2) and (4.3), we will make use of a general �-lim inf
result as stated in [51, Cor. 4.4]. Specifically, let H be a separable and reflexive Banach space, and gn,
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g∞ : (0, T) × H −→ ( − ∞, ∞] be such that gn(t, ·) and g∞(t, ·) : H −→ ( − ∞, ∞] are convex and for
all u ∈ H and a.e. t ∈ (0, T), the following holds:

g∞(t, u) ≤ inf
{

lim inf
n

gn(t, un) : un ⇀ u in H
}

. (4.17)

Then for p ∈ [1, ∞], un ⇀ u in Lp(0, T; H) (weak-∗ if p = ∞) and t −→ max{0, −gn(t, un(t)} uniformly
integrable, we have, ∫ T

0

g∞(t, u(t)) dt ≤ lim inf
n

∫ T

0

gn(t, un(t)) dt. (4.18)

Note that the uniform integrability condition is automatically satisfied if gn are non-negative, or bounded
from below. See also the remark after Cor. 4.4 in [51].

For (4.2), we set H = H1(�),

g∗
ε
(t, w) := 2

∫
�

〈∇w, Dε∇w〉 dx, and g∗
∞(t, w) := 2

∫
�

〈∇w, (D + G)∇w〉 dx.

Then g∗
ε
(t, ·) and g∗

∞(t, ·) are convex and (4.17) holds true by the time independent version of (4.2). Hence
we have ∫ T

0

2
∫
�

〈∇w, (D + G)∇w〉 dx dt ≤ lim inf
ε

∫ T

0

2
∫
�

〈∇wε(t), Dε∇wε(t)〉 dx dt

provided wε ⇀w in L2((0, T);H). This last condition is satisfied by the identification wε(t) =
√

ρε (t)
πε

,

w(t) =
√

ρ(t)
π

, and (3.20). This concludes the lower bound (4.2).
For (4.3), we set H = L2(�),

gε(t, s) := ψε(ρ(t), s) = 1

2

∫
�

〈∇uε, B−1
ε

∇uε〉ρε(t) dx with − ∇ · (ρεB−1
ε

∇uε) = s,

and

g∞(t, s) := ψ(ρ(t), s) = 1

2

∫
�

〈∇u, B
−1∇u〉ρ(t) dx with − ∇ · (ρB

−1∇u) = s.

Again, gε(t, ·) and g∞(t, ·) are convex because the map s → uε or u is uniquely defined and linear. By
(4.10), (4.17) is satisfied. Hence, we have∫ T

0

ψ
(
ρ(t), s(t)

)
dt ≤ lim inf

∫ T

0

ψε
(
ρε(t), sε(t)

)
dt

upon the identification sε(t) = ∂tρ
ε
t and s(t) = ∂tρt. The fact that sε ⇀ s in L2((0, T); H) follows from

(3.23). Lower bound (4.3) is thus proved.
The above conclude the proof for Theorem 4.1.

5. Comparison between limiting Wasserstein distances

In this section, we use the just established convergence result for gradient flows in EDI form to fur-
ther analyse the induced limiting Wasserstein distance W. In particular, we will show that the limiting
Wasserstein metric W is in general, different, and in fact strictly larger than WGH obtained from the
Gromov–Hausdorff limit of Wε which is a commonly considered mode of convergence of metric spaces.
Gromov–Hausdorff distance can be used to compare the distortion of two metric spaces from being
isometric. The particular property needed in this paper is that the Gromov–Hausdorff convergence
of a compact metric space �k implies the Gromov–Hausdorff convergence of the Wasserstein space
(P(�k), Wk) [53, Theorem 28.6]. Briefly stated, let (X, dX) and (Y, dY) be two metric spaces. Their
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Gromov–Hausdorff distance is defined as [53, (27.2)]

DGH(X, Y) = 1

2
inf
R

sup
(x,y),(x′ ,y′)∈R

∣∣∣dX(x, x′) − dY(y, y′)
∣∣∣, (5.1)

where R⊂X×Y is a correspondence or relation between X and Y. We refer to [53, Chapters 27, 28]
for more detailed information about the concept of Gromov–Hausdorff distances and convergence. For
our application, we will take (X, dX) := (�, dε) or (P(�), Wε).

We remark that several of the following statements require the existence of densities (with respect
to Lebesgue measure) for the underlying probability measures and the space to be geodesic complete.
These are automatically satisfied by our standing assumptions (see Section 2.4).

5.1. Effective Wasserstein distance W induced by convergence of gradient flows

For convenience, we recall here the Kantorovich and Benamou–Brenier formulations (1.4) and (1.5) for
our ε-Wasserstein metric Wε:

W2
ε
(ρ0, ρ1) := inf

{∫∫
d2
ε
(x, y) dγ (x, y);

∫
�

γ (x, dy) = ρ0(x) dx,
∫
�

γ ( dx, y) = ρ1(y) dy

}
(5.2)

and

W2
ε
(ρ0, ρ1) := inf

{∫ 1

0

∫
ρt(x)〈Bε(x)vt(x), vt(x)〉 dx dt, (ρt, vt) ∈ V(ρ0, ρ1)

}
, (5.3)

where V is defined in (1.6). The ε-metric dε on �⊂R
n is given via the least action

d2
ε
(x, y) := inf

{∫ 1

0

〈Bε(zt)żt, żt〉 dt, z0 = x, z1 = y

}
. (5.4)

A curve z( · ) ∈ AC([0, 1];Rn) that achieves the infimum in (5.4) is a geodesic in the metric space (Rn, dε).
From [6, Theorem A,B], (5.2) and (5.3) are equivalent.

The same formulations hold for our induced limit Wasserstein distance W. More precisely, we have

W
2
(ρ0, ρ1) := inf

{∫ ∫
d

2
(x, y) dγ (x, y);

∫
�

γ (x, dy) = ρ0(x) dx,
∫
�

γ ( dx, y) = ρ1(y) dy

}
, (5.5)

and the equivalent formulation

W
2
(ρ0, ρ1) := inf

{∫ 1

0

∫
ρt(x)〈Bvt(x), vt(x)〉 dx dt, (ρt, vt) ∈ V(ρ0, ρ1)

}
. (5.6)

Here the constant matrix B is defined in (A.9) and the induced-metric d on �⊂R
n is again given via

the least action

d
2
(x, y) := inf

{∫ 1

0

〈Bżt, żt〉 dt, z0 = x, z1 = y

}
. (5.7)

From the Euler–Lagrangian equation for the minimiser of (5.7), the optimal curve z̃( · ) that achieves the
least action satisfies B¨̃zt = 0, and hence it has constant speed, ˙̃zt = y − x. Thus, we have explicitly

d
2
(x, y) = 〈B(y − x), y − x〉 = 〈Bn̂, n̂〉|y − x|2, where n̂ = y − x

|y − x| . (5.8)

Note that both Wε and W induce a Riemannian metric on P(�). More precisely, for any ρ ∈P(�),
and any s1, s2 ∈ TP, the tangent plane at ρ, the first fundamental form are defined, respectively, as〈

s1, s2

〉
TP ,TP ,ε

:=
∫
ρ(x)〈B−1

ε
(x)∇u1(x), ∇u2(x)〉 dx, (5.9)
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where si = −∇ · (ρB−1
ε

∇ui), i = 1, 2 for Wε, and
〈
s1, s2

〉
TP ,TP

:=
∫
ρ(x)〈B−1

(x)∇u1(x), ∇u2(x)〉 dx, (5.10)

where si = −∇ · (ρB
−1∇ui), i = 1, 2 for W. This is also manifested by the fact that both the corresponding

dissipation functionals are bilinear forms in s:

ψε(ρ, s) = 1

2

∫
�

〈∇u, B−1
ε

∇u〉ρ dx with s = −∇ · (ρB−1
ε

∇u
)

,

and

ψ(ρ, s) = 1

2

∫
�

〈∇u, B
−1∇u〉ρ dx with s = −∇ ·

(
ρB

−1∇u
)

.

5.2. The Gromov–Hausdorff limit WGH of Wε

Now we consider the convergence in the Gromov–Hausdorff sense of Wε to a limiting Wasserstein
metric, denoted as WGH.

We first show that even in one dimension, in general it is always the case that WGH <W unless πε
and Bε are related to each other in some specific way. Recall the metric dε in (5.4). From the Euler–
Lagrangian equation for the minimiser zt = z̃εt , we have

d

dt
(2Bε(zt)żt) = B′

ε
(zt)(żt)

2,

leading to B′
ε
(zt)ż2

t + 2Bε(zt)z̈t = 0 and thus

Bε(z)ż2 = Cε(x, y), for some constant Cε(x, y).

Upon solving this ODE for zt with the two boundary conditions z(0) = x, z(1) = y, we have√
Cε(x, y) =

∫ y

x

√
Bε(z) dz.

Hence the infimum in (5.4) is given by

d2
ε
(x, y) = Cε(x, y) =

(∫ y

x

√
Bε(z) dz

)2

. (5.11)

As Bε(x) = B( x
ε
), it is easy to verify that for any x, y ∈�, there exist some integer Nε and δ ∈ ( − 1, 1),

such that y − x = Nεε+ δε and Nεε→ |x − y|. Notice also B( · ) is 1-periodic. Hence,

d2
ε
(x, y) =

(
ε

∫ y
ε

x
ε

√
B(s) ds

)2

=
(
εNε

∫ 1

0

√
B(s) ds + ε

∫ δ

0

√
B(s) ds

)2

−→
ε→ 0 |x − y|2

(∫ 1

0

√
B(s) ds

)2

=: d2
GH(x, y).

Notice that if one chooses R to be the identity map as the correspondence between the metric spaces
X := (�, dε) and Y := (�, dGH), then from (5.1), we have

DGH(X, Y) ≤ 1

2
sup

(x,x),(y,y)∈X×Y
|dε(x, y) − dGH(x, y)| → 0.

Hence the one dimensional metric space (�, dε) Gromov–Hausdorff converges to (�, dGH). By
[53, Theorem 28.6], the Wasserstein distance Wε defined in (5.2) also converges to the following limiting
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Wasserstein distance WGH in the Gromov–Hausdorff sense,

W2
GH(ρ0, ρ1) := inf

{∫ ∫
d2

GH(x, y) dγ (x, y);
∫
�

γ (x, dy) = ρ0(x) dx,
∫
�

γ ( dx, y) = ρ1(y) dy

}
.

(5.12)
Again by [6, Theorem AB], WGH can be equivalently written in the Benamou–Brenier formulation

W2
GH(ρ0, ρ1) := inf

{∫ 1

0

∫
ρt(x)〈Cvt(x), vt(x)〉 dx dt, (ρt, vt) ∈ V(ρ0, ρ1)

}
(5.13)

with C =
(∫ 1

0

√
B(s) ds

)2

.

On the other hand, in one dimension, we can solve the cell problem (A.6) explicitly:

∂y

(
D(x, y)∂yw(x, y)

) = −∂y (D(x, y)) , where D(x, y) = π (x, y)B(y)−1,

∂yw(x, y) = −1 + C(x)

D(x, y)
with C(x) =

(∫
1

D(x, y)
dy

)−1

.

Then (A.7) and (A.9) are given as

D(x) =
∫

D(x, y) dy,

G(x) =
∫

D(x, y)

(
−1 + C(x)

D(x, y)

)
dy = −

∫
D(x, y) dy +

(∫
1

D(x, y)
dy

)−1

,

B =
(

D + G

π

)−1

= π

∫
1

D(x, y)
dy = π

∫
B(y)

π (x, y)
dy.

By the Cauchy–Schwarz inequality, we always have

C =
(∫ 1

0

√
B(s) ds

)2

=
(∫ 1

0

√
π (x, y)

√
B(y)

π (x, y)
dy

)2

≤
(∫

π (x, y) dy

)(∫
B(y)

π (x, y)
dy

)
= B(x),

and the equality holds if and only if there exists some constant c> 0 such that

√
π (x, y) = c

√
B(y)

π (x, y)
, i.e. π (x, y) = π (y) = c

√
B(y). (5.14)

Hence, unless π (y) = c
√

B(y), we always have

dGH(x, y)< d(x, y) for all x, y ∈�
i.e. WGH <W. As an afterthought, it seems not quite surprising that some condition, such as (5.14), is
needed in order for W to be equal to WGH. We will elaborate upon this at the end of this section.

Next, we illustrate the n-dimensional case by means of an example. From [12, Section 3.3], it is
shown that the functional

Fε(z) =
∫ 1

0

〈Bε(zt)żt, żt〉 dt, for z( · ) ∈ (H1([0, 1]))n with z0 = x, z1 = y, (5.15)

�-converges with respect to the strong L2(0, 1)-topology to

F(z) =
∫ 1

0

ϕ(ż(t)) dt for z( · ) ∈ (H1([0, 1]))n, with z0 = x, z1 = y, (5.16)
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where the limiting integrand ϕ is given by

ϕ(v) := lim
T→+∞

inf
u∈(H1

0 ([0,T]))n

{
1

T

∫ T

0

〈B(u(t) + vt)(u̇(t) + v), u̇(t) + v〉 dt

}
. (5.17)

Now following [12, Example 3.3], we consider Bε(z) = b( z
ε
) where b is the following 1-periodic

function on [0, 1]n,

b(y) =
{
β if y ∈ (0, 1)n;
α if for some i, yi ∈Z.

If nα < β, one obtains that the limiting energy integrand ϕ is given by

ϕ(v) = α

(
n∑

i=1

|vi|
)2

. (5.18)

Using the property of �-convergence [12],Theorem 1.21], we deduce also the convergence of the
minimum value d2

ε
of Fε to the minimum value d2

GH of F, where

dGH(x, y) = √
α

(
n∑

i=1

|n̂i|
)

|y − x| = √
α‖y − x‖�1 with n̂ = y−x

|y−x| . (5.19)

On the other hand, note that the value α is attained only on the (n − 1)-dimensional set
⋃n

i=1{yi ∈Z}.
This set is invisible by B which is obtained by solving the elliptic cell problem (A.6). Hence the induced
limiting Wasserstein distance W (5.5) with d defined in (5.7) is d(x, y) = β|x − y| for all x, y ∈�. Thus,
for this example, we have

dGH(x, y) = √
α‖y − x‖�1 ≤ √

αn‖y − x‖�2 <
√
β|y − x| = d(x, y).

Hence we have again WGH <W.
We would like to point out that for the above example, the integrand ϕ in (5.17) is always quadratic, or

homogeneous of degree 2 in p. (In fact, for any λ �= 0, by applying the change of variables t̃ = λt, ũ(t̃) =
u(t), it is easy to verify that ϕ(λv) = λ2ϕ(v).) However, the ϕ in (5.18) is not bilinear in p, in contrast to
the ϕ in (5.7):

ϕ(p) = 〈B̄p, p〉.
Below we give further remarks about the discrepancy between W and WGH.

(1) We first explain the condition (5.14). This is nothing but the fact that one can choose the Riemannian
metric (R, gε) with (gε)ij(x) = Bε(x), so that the Wasserstein distance on (R, gε) coincides with Wε.
More precisely, the condition (5.14) implies the volume form on (R, gε) is

dVol =√|gε| dx =√
Bε dx = cπε(x) dx = cπ (

x

ε
) dx. (5.20)

Therefore, the heat flow on (R, gε), in terms of the density function with respect to the volume
element dVol is given by

∂tpε = 1√|gε|∇ · (
√|gε|gij

ε
∇pε) = 1

πε
∇ · (πεB

−1
ε

∇pε). (5.21)

This equation, in terms of the density function ρε(x, t) = pε(x, t)
√|gε| = pε(x, t)πε(x), is exactly the

Wε-gradient flow with respect to the relative entropy Eε in (2.1):

∂tρε = ∇ · (πεB
−1
ε

∇ ρε
πε

) = ∇ ·
(
ρεt B−1

ε
∇ δEε

δρ
(ρεt )

)
. (5.22)

Therefore, condition (5.14) means that the discrepancy between W and WGH does not happen in
one dimension when one considers homogenisation of heat flow on (R, gε). In other words, the
homogenised heat flow in one dimension naturally induces the same limiting distance as finding
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the limiting minimum path on (R, gε). On the other hand, even in one dimension, the convergence
of the discrete transport distance to continuous transport distance W2 requires an isotropic mesh
condition [22],eq. (1.3)]. Without this condition, the discrete-to-continuous limiting distance in the
Gromov–Hausdorff sense can be different from the continuous transport distance W2 [22], Theorem
1.1, Remarks 1.2 and 1.3].

(2) We believe that the above conclusion of WGH <W is true in general, particularly in higher dimen-
sions, even if we consider heat flow. This is because the Gromov–Hausdorff limit dGH of dε involves
finding the minimum or geodesic distance between two points as indicated in (5.4). This amounts to
searching for the minimum path in the underlying spatial inhomogeneity. On the other hand, the B
in the limiting induced distance d is found by solving an elliptic cell-problem (A.6) which requires
taking some average of the spatial inhomogeneity. (Note that in contrast, in one dimension, any
path will explore the whole inhomogeneous landscape.) Hence, in general dGH and WGH should be
smaller than d and W. See also the discussion in [20, p. 4298] and the work [22].

6. Conclusion

This paper provides a variational framework using the energy dissipation inequality to prove the con-
vergence of gradient flows in Wasserstein spaces. Our key contribution is the incorporation of fast
oscillations in the underlying energy and medium. In particular, the gradient-flow structure is preserved
in the limit but is described with respect to an effective energy and metric. Our result is consistent
with asymptotic analysis from the realm of homogenisation. Even though we apply the result to a linear
Fokker-Planck equation in a continuous setting, we believe the approach is applicable to a broader class
of problems including nonlinear equations or evolutions on graphs and networks.
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Appendix A. Asymptotic analysis for the ε-gradient flow

In this section, we use the method of asymptotic expansion to analyse the convergence of the ε-Fokker-
Planck equation (2.4) (or (2.15)) to the limiting homogenised one (2.24).

Recall the assumptions (2.30) and (2.32) for Bε and πε in Section 2.4 and the definition of fast variable
y := x

ε
. Introducing

D(x, y) = π (x, y)B−1(y), (A.1)

then (3.2) reads

∂tf
ε = 1

πε
∇ ·

(
D(x,

x

ε
)∇f ε

)
. (A.2)

Consider the ansatz

f ε
(
x, t

)= f0

(
x,

x

ε
, t
)+ εf1

(
x,

x

ε
, t
)+ O(ε2) with f0 and f1 1-periodic in y. (A.3)

Substituting it into (A.2), we have

∂t

(
f0 + εf1 + O(ε2)

)= 1

π (x, y)

(
∇x + 1

ε
∇y

)
·
(

D(x, y)

(
∇x + 1

ε
∇y

) (
f0 + εf1 + O(ε2)

))
. (A.4)

Terms of different orders are analysed as follows.

(I) 1
ε2 -terms. They satisfy,

∇y · (D(x, y)∇yf0(x, y, t)
)= 0.

Multiply the above by f0(x, y, t) and then integrate over y gives
∫

|∇yf0(x, y, t)|2 dy = 0 which
implies f0(x, y, t) = f0(x, t).

(II) 1
ε
-terms. They satisfy,

∇y · (D(x, y)(∇xf0 + ∇yf1)
)= 0. (A.5)

For i = 1, 2, . . . d, let wi(y) be the solution to the cell problem

∇y · (D(x, y)∇ywi(x, y)
)+ ∇y · (D(x, y)�ei)= 0, (A.6)

where �ei is the unit vector in i-coordinate. The above equation is solvable for each i due to the

compatibility condition
∫

∇y · (D(x, y)�ei) dy = 0. Then we can write f1 as

f1(x, y, t) =
∑

i

∂xi f0(x, t)wi(x, y).
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(III) O(1)-terms. Collecting the O(1)-terms in (A.4) and integrating with respect to y lead to

∂tf0(x, t) π̄ (x) = ∇x · (D(x)∇xf0(x, t)) + ∇ ·
(∑

i

∂xi f0(x, t)Gi(x)

)
,

where

D(x) :=
∫
π (x, y)B−1(y) dy, Gi(x) :=

∫
π (x, y)B−1(y)∇ywi(x, y) dy, (A.7)

and π =
∫
π (x, y) dy; see (2.33).

Then the leading dynamics in terms of f0 is given by

∂tf0 = 1

π
∇ · ((D + G)∇f0

)
, where G = (G1, G2, . . .Gn). (A.8)

Upon defining

B(x) =
(

D + G

π

)−1

, (A.9)

in terms of ρ = f0π , (A.8) can be written as

∂tρ = ∇ ·
(
ρ B

−1∇ log
ρ

π

)
. (A.10)

The above procedure certainly works for the simpler uniform convergence case πε = π II
ε

in (2.34)
which converges uniformly to π0. We find it illustrative to write down the homogenized limit equation.
In this case, the definition of D (A.1), the cell problem (A.6) and the effective coefficients (A.7) now
become

D(x, y) = π0(x)B−1(y), ∇y · (B−1(y)∇ywi(y)
)+ ∇y · (B−1(y)�ei

)= 0,

and

D(x) := π0(x)
∫

B−1(y) dy, G(x) := π0(x)
∫

B−1(y)∇yw(y) dy, (where w = (w1, w2 . . .wn)),

so that

B(x) =
(

D(x) + G(x)

π0(x)

)−1

=
(∫

B−1(y) dy +
∫

B−1(y)∇yw(y) dy

)−1

. (A.11)

Then the effective Fokker-Planck equation is given by

∂tρ = ∇ ·
(
ρ B

−1∇ log
ρ

π0

)
. (A.12)

Comparing (A.9) and (A.11), it is clear that there is interaction between Bε and πε in the former case
but not in the latter.

Appendix B. Construction of ξ̃ ε for (4.15)

Here we construct an approximating sequence ξ̃ ε ⇀ ξ̃ in H1(�) such that (4.15) holds. As mentioned,
due to the spatially varying weight function f ε, in order to decouple the dependence between Dε and f ε,
an extra step is needed if we want to invoke the classical �-convergence result Theorem 4.2. Without
loss of generality, we assume that ξ̃ is smooth so that pointwise evaluation ξ̃ (x) is well-defined. This can

https://doi.org/10.1017/S0956792525100077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100077


26 Y. Gao and N.K. Yip

be achieved by first convolving ξ̃ with a smooth kernel. We also recall by statement (1) of Lemma 3.1
that f is a bounded and uniformly positive function.

For this purpose, we write for any ξ̃ ε that
1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f ε dx

= 1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉fc dx + 1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(f − fc) dx + 1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(f ε − f ) dx,

where fc is some continuous function approximating f . Next, we partition � into finitely many cubes Cj

and define the following piece-wise constant function

f̄c(x) = f̄cj := 1

|Cj|
∫

Cj

fc dx for x ∈ Cj.

Hence
1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉fc dx =
∑

j

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f̄cj dx +
∑

j

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(fc − f̄cj) dx.

With the above, we have

lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f ε dx

= lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f̄c dx + lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(fc − f̄c) dx

+ lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(f − fc) dx + lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(f ε − f ) dx.

Now on each Cj, we can invoke Theorem 4.2 to state the existence of recovery sequence ξ̃ εj ⇀ ξ̃ in
H1

0 (Cj) + gcj, where gcj = ξ̃

∣∣∣
∂Cj

such that

lim
ε→0

1

2

∫
Cj

〈∇ ξ̃ εj , Dε∇ ξ̃ εj 〉f̄cj dx = 1

2

∫
Cj

〈∇ ξ̃ , (D + G)∇ ξ̃ 〉f̄cj dx. (B.1)

Next let ξ̃ ε = ξ̃ εj on Cj. Note that ξ̃ ε thus defined is a global H1-function on �. As there are only finitely
many cubes Cj, we can conclude that

lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f̄c dx = 1

2

∫
�

〈∇ ξ̃ , (D + G)∇ ξ̃〉f̄c dx. (B.2)

Hence we have

lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉f ε dx

= 1

2

∫
�

〈∇ ξ̃ , (D + G)∇ ξ̃〉f dx

+1

2

∫
�

〈∇ ξ̃ , (D + G)∇ ξ̃ 〉(f̄c − f ) dx + lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(fc − f̄c) dx (B.3)

+ lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(f − fc) dx + lim
ε→0

1

2

∫
�

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉(f ε − f ) dx. (B.4)

A final ingredient we need is that the sequence of functions 〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉 is equi-integrable: for all
σ > 0, there exists a δ > 0 such that for any S ⊂� with |S| ≤ δ, then∫

S

〈∇ ξ̃ ε, Dε∇ ξ̃ ε〉 ≤ σ holds for all ε > 0. (B.5)
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Once this is shown, we can then make use of Lusin and Egorov Theorems to claim that all the terms
in (B.3) and (B.4) converge to zero as ε→ 0: up to arbitrarily small measures, f equals a continuous
function fc, and the convergence of f ε to f is uniform. We recall again that f ε and f are uniformly bounded
functions.

We now show that the sequence of functions ξ̃ ε can be constructed so as it satisfies (B.5). Without loss
of generality, we replace ξ̃ by a continuous and piece-wise affine function – this can be achieved by an
approximation using Galerkin or finite element method (given that ξ̃ is smooth). Then we have a partition
of � into a collection of polyhedrons. For simplicity, we can further assume that these polyhedrons are
the same as the Cj on each of which f̄c is constant. Now we construct ξ̃ ε according to the following
procedure.

First, we define A(x, y) = D(x, y) = π (x, y)B−1(y). By the smooth assumption of π and B, we have that
A is smooth in y ∈T

n and x ∈ Cj.
Now, for x ∈ Cj, as ∇ ξ̃ is a constant vector pj ∈R

n, the homogenized matrix A(x) in Theorem 4.2 is
given by (4.8) and is repeated here for convenience.

〈
A(x)pj, pj

〉= inf

{∫
Tn

〈
A (x, y) (pj + ∇v), (pj + ∇v)

〉
dy, v ∈ H1(Tn)

}
.

The inf above is achieved by vj(y) = |pj|ŵj(x, y) where ŵj solves the following cell-problem:

divy

(
A(x, y)∇ŵj

)= −divy

(
A(x, y)

pj

|pj|
)

, ŵj(x, ·) ∈ H1(Tn),
∫
Tn

ŵj(x, y) dy = 0.

The smoothness assumption on A implies that

‖ŵj(x, ·), ∇yŵj(x, ·), ∇xŵj(x, ·)‖L∞(T2) ≤ C

for some constant C that does not depend on x and ε.
Next, let 0< d1 < d2 be two positive numbers. For each Cj, there exists a smooth subdomain C′

j

of Cj such that d1ε≤ dist(∂C′
j, ∂Cj) ≤ d2ε. Then we define a cut-off function ηεj on Cj satisfying: (i)

0 ≤ ηεj ≤ 1 on Cj; (ii) ηεj = 1 on C′
j; and (iii) ηεj (x) −→ 0 smoothly as x −→ ∂Cj so that ηεj ∈ C∞

0 (Cj); (iv)
‖ε∇ηεj ‖L∞(Cj) ≤ C for an ε-independent constant C.

With the above, suppose ξ̃ (x) =∑
j

[
αj + 〈pj, x〉]χCj (x), where χCj is the characteristic function of Cj.

We then define

ξ̃ ε(x) =
∑

j

[
αj + 〈pj, x〉 + εηεj (x)|pj|ŵj(x,

x

ε
)
]
χCj (x).

Then we have,

∇ ξ̃ ε(x) =
∑

j

[
pj + ηεj (x)|pj|∇yŵj(x,

x

ε
) + εηεj (x)|pj|∇xŵj(x,

x

ε
) + ε∇ηεj (x)|pj|ŵj(x,

x

ε
)
]
χCj (x).

By the aforementioned estimates for ŵj and ηεj , we can conclude that |∇ ξ̃ ε(x)| ≤ C|pj| for x ∈ Cj and
hence

|∇ ξ̃ ε(x)| ≤ C|∇ ξ̃ (x)| for all x ∈�.

(Here we make use of the L∞(Tn) estimates for ŵj but we could also resort to the weaker L2(Tn) esti-
mates.) Note that the above statement holds uniformly for all ε� 1. We can then conclude (B.5) as∫
�

|∇ ξ̃ |2 dx is finite.

The fact that
{
ξ̃ ε
}
ε>0

is a recovery sequence for ξ̃ is due to the properties that ξ̃ ε −→ ξ̃ in L2(�) and

∇ ξ̃ ε differs from the “optimal” oscillatory functions
{
pj + |pj|∇yŵj(x, x

ε
)
}

j
only on

⋃
j Cj\C′

j which has
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vanishing measure as ε−→ 0. More precisely, we have

lim
ε→0

∫ 〈
A(x,

x

ε
)∇ ξ̃ ε, ∇ ξ̃ ε〉f̄c dx = lim

ε→0

∑
j

∫
Cj

〈
A(x,

x

ε
)∇ ξ̃ ε, ∇ ξ̃ ε〉f̄cj dx

=
∑

j

∫
Cj

∫
Tn

〈
A(x, y)

(
pj + |pj|∇yŵj(x, y)

)
,
(
pj + |pj|∇yŵj(x, y)

)〉
dy f̄cj dx

=
∑

j

∫
Cj

〈Ā(x)pj, pj〉f̄cj dx =
∫ 〈

Ā(x)∇ ξ̃ , ∇ ξ̃ 〉f̄c dx.

The above computation is classical in the theory of two-scale convergence – see [3, Prop. 1.14(i), and
equations (2.10), (2.11)]. Note also that (B.1) and (B.2) hold as f̄c is constant on the Cj’s.

We can now conclude (4.15).
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