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ABSTRACT

As an effective tool to distinguish different tidal components, classical tidal current harmonic analysis has

been widely used to obtain harmonic parameters of internal tidal currents. However, harmonic parameters

cannot exactly reveal the motion of internal tides, as the irregular temporal variations for internal tides are

significant in many regions of the world’s oceans. An enhanced harmonic analysis (EHA) algorithm based on

the independent point scheme and cubic spline interpolation is presented in this paper to obtain harmonic

parameters with temporal variations for different tidal constituents of internal tides. Moreover, this algorithm

is applied to analyze 14months of current data obtained from amooring located on the continental shelf in the

northeastern region of the South China Sea. The obvious irregular temporal variations for the four principal

constituents—M2, K1, S2, and O1—of internal tides in this region are indicated. It is hoped that this algorithm

might present a brand-new view for researchers to investigate the irregular temporal motions of internal tides.

1. Introduction

Over centuries great progress has been made to explain

and predict oceanic tides. Our understanding of tides

deepened with several breakthroughs made by some sci-

entific pioneers (e.g., Newton’s theory of gravitation and

equilibrium tide, and Laplace’s expression about the tidal

potential). Internal tides—namely, internalwaveswith tidal

frequency—were first observed by Helland-Hansen and

Nansen (1909) in the Norwegian Sea by means of hydro-

graphic observations. Since then they have been observed

inmany places in theworld’s oceans (Baines 1973). There is

an increasing need to understand the dynamic behavior of

oceanic internal tides and internal tidal currents.

The harmonic method for tidal analysis is an effective

tool to distinguish different tidal components and is

widely used in the study of oceanic tides or tidal current

and internal tides or internal tidal currents. With a least

squares fitting method, the harmonic analysis (HA) can

be used to determine the relative amplitude and phase lag

of each tidal component. Because traditional ordinary

least squares minimization is highly sensitive to the

nontidal components in the observed signal that will in-

troduce nontidal noise into the tidal signal by recording

and transcription errors and climatic events, essentially

the least squares minimization overfits the nontidal

components in an attempt to minimize the total residual

error (Leffler and Jay 2009) and obtains constants (phase
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and amplitude) for each tidal frequency. This may be

practicable in the study of oceanic tides and tidal currents

because surface tides in the deep ocean are nearly periodic

and predictable at most locations (Matte et al. 2013).

However, there are many situations in which the observed

tides or tidal currents are modulated by some nontidal

processes, some of which occur in the tidal frequency band.

Also, morphological modifications leading to changes in

bed friction, surface slope, and/or vegetationmay alter tidal

properties (Amin 1983, 1985; Godin 1985; DiLorenzo et al.

1993;Horsburgh andWilson 2007; Jay 2009; Jay et al. 2011).

Some scientists have noticed the issue and carried out re-

search on generalizing classical harmonic analysis to allow

for the study of nonstationary tides (Amin 1983, 1985, 1993;

Jay and Flinchem 1995, 1997, 1999; Jay 1991, 2009; Jay and

Kukulka 2003; Buschman et al. 2009; Kukulka and Jay

2003a,b; Parker 2007;Matte et al. 2013; Zaron and Jay 2014;

Pan et al. 2018). Most of these inspiring works, however,

were applied to the problem of river tides, because they are

‘‘conceptually the simplest non-stationary tidal process’’

(Jay and Flinchem 1997, p. 5705). But when it comes to

internal tides and internal tidal currents, things are quite

more complicated and many researchers have found evi-

dence for the irregular temporal variations of internal tides

(van Haren et al. 1999; Gerkema et al. 2004; van Haren

2004; Jan et al. 2008; Shaw et al. 2009; Buijsman et al. 2010;

Klymak et al. 2011; Lee et al. 2012; Wu et al. 2013; Alford

et al. 2015; Kelly et al. 2015; van Haren et al. 2015). As a

consequence of the seasonal variations in stratification, the

generation and propagation of internal tides show irreg-

ular variations that are not phase locked (incoherent)

with astronomical forcing (Lee et al. 2012). To the best of

our knowledge, most studies on internal tidal analysis

employed classical harmonic analysis (Guo et al. 2006;

Plueddemann and Farrar 2006; Teague et al. 2007; Duda

and Rainville 2008; Zu et al. 2008; Liu et al. 2010; Ramp

et al. 2010; Zhao et al. 2010; Xu et al. 2011; J. Zhang et al.

2011; Guo et al. 2012; Lee et al. 2012; Xu et al. 2013; Gao

et al. 2015; Gao et al. 2016; Xu et al. 2016), which may

provide only approximate values of tidal constituent

properties for the nonstationary signal.

Limited in situ observations and results fromnumerical

models have provided some hints on this issue, but more

research is needed to investigate the phenomenon of the

irregular temporal variations of internal tides and internal

tidal currents. In this work changes are made for the

classical harmonic analysis (CHA) algorithm tomake the

method suitable for the analysis of nonstationary signals.

We rethink the concept of harmonic constants because

constituent amplitudes and phaseswill be defined as time-

dependent values. Then the traditional Rayleigh criterion

is employed as a reference for users to decide which

constituents to be included for the harmonic analysis.

Finally, we present an enhanced harmonic analysis (EHA)

algorithm using an independent point scheme to reduce the

number of undetermined harmonic parameters to obtain a

more accurate result. The mean difference between EHA

and the segmented harmonic analysis with cubic spline in-

terpolation lies in the fact that the former is using the data

from the entire record to determine the harmonic parame-

ters at any particular pointwith the spline coupling included.

This paper is organized as follows. Section 2 presents the

main methodology of the EHA algorithm. Then the capa-

bility of EHA is investigated in section 3 with a numerical

example. In section 4 EHA is applied to 14-month mooring

current data in the South China Sea (SCS) and harmonic

parameterswith significant temporal variations are obtained.

Finally, the summary of this paper is given in section 5.

2. Methodology

a. Statistical model for EHA

Harmonic tidal current analysis is usually conducted

to obtain the constants of amplitudes and phase lags for

each prescribed tidal frequency. Originating in the late

nineteenth century, the traditional harmonic tidal model

involving tidal and nontidal energies can be expressed as

h(t
i
)5S

0
1 �

J

j51

Aj 3 cos sjt
i
2fj

� �
1R t

i

� �
, for

i5 0, 1, . . . ,N , (1)

where h(ti) is the measurement at time ti; S0 is a constant

datum; Aj, f
j, and s j (j 5 1, J) are the amplitude, phase

lag, and tidal frequency of constituent j, respectively;

R(ti) is the nontidal residual (Foreman et al. 2009); J is

the number of tidal constituents; andN is the number of

observation time samples.

TheHA approach was first proposed byDarwin in the

nineteenth century (Darwin 1891). In mathematical

terms this HA approach is implemented by Foreman

(1977) employing FORTRAN 77 and by Pawlowicz

et al. (2002) employing MATLAB. Codiga (2011) then

improves the tidal program T_TIDE (Pawlowicz et al.

2002) inmany respects, including the advances of Leffler

and Jay (2009) and the second Foreman code (Foreman

et al. 2009), in a MATLAB code. Though it has been

applied to research in different fields for many years

(Foreman et al. 2009), the foremost limitation of this

approach lies in the assumption of stationarity. This

assumption works well on the traditional harmonic

analysis for water elevations within short periods (e.g.,

one year or so) and tidal–tidal current data within a short

period (e.g., one year or so). However, the conventional

HA does not work particularly well for current data
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because of the nonstationary (Godin 1983). Moreover,

when it comes to the cases in which the nonlinear inter-

actions play an important role, such an assumption is often

invalid. In the first case of shallow water, as a result of

nonlinear interactions between the tide and storm surges

or variable river discharges, the tidal amplitudes and

phases are changed during periods when these phenomena

occur (Foreman et al. 2009). A series of works by David

Jay and colleagues (Jay 1991, 2009; Jay and Flinchem1995,

1997, 1999; Jay et al. 2011; Kukulka and Jay 2003a,b;Matte

et al. 2013) draw a clear map on the harmonic analysis of

nonstationary river tides. In the second case of secular

recorded tides, as has been discovered bymeans ofwavelet

analysis (Jay and Flinchem 1997, 1999; Jay 2009), the sur-

face expressions of internal tides constitute a significant

component of the total recorded tide (Colosi and Munk

2006). As early as the 1960s, Munk and Bullard (1963,

p. 344) suggested that ‘‘the mean sea level may vary by

10cm in a decade, and the tidal constants are altered by this

variation.’’ Actually, fluctuations in sea level in the fre-

quency range of cycles per decade to cycles per day are

associated, apart from the tides (Groves and Zetler 1964;

Munk and Bullard 1963). Based on the venerable tidal

records in the Honolulu tidal gauge, Colosi and Munk

(2006) presented the variability of surface tide modulated

by theM2 internal tide, which highly inspired this paper. In

fact, there may be some possibilities that internal tides are

modulated by the slowly varying thermal structure (Colosi

and Munk 2006), the change of stratification or seasonally

varying ice cover (Foreman et al. 2009), and the nonlinear

interactions between them and background internal

waves. Until recently, various researchers (Gerkema et al.

2004; Jan et al. 2008; Shaw et al. 2009; Buijsman et al. 2010;

Klymak et al. 2011) have indicated the existence of irreg-

ular temporal variations for internal tides inside the ocean

by viewing the in situ observations. In an effort to obtain

time-variable tidal harmonic parameters, an enhanced

harmonic analysis algorithm has been developed. We will

first introduce a statistical model based on the classical

tidal harmonic analysis to nonstationary internal tidal re-

cords in order to distinguish between the time-variable

tidal harmonic parameters and the nontidal components:

h(t
i
)5 S

0
(t
i
)1 �

J

j51

Aj t
i

� �
cos sjt

i
2fj(t

i
)

� �
1R t

i

� �
, for

i5 0, 1, . . . ,N . (2)

The main difference between this model and the tradi-

tional one is the assumption of nonstationary amplitude

Aj(t), phase lag fj(t) of constituent j, and the zero-frequency

component S0(t). Besides, the ‘‘noise’’ R(ti) for the

time series may contain the nontidal residual and the

variability of tidal parameters at time scales that cannot

be resolved. To obtain the harmonic parameters of in-

ternal tides with temporal variations [i.e., Aj(t), fj(t),

and S0(t) in Eq. (2)], we present the EHA algorithm that

introduces an independent point scheme (see section

2b) and the cubic spline interpolation (see section 2c) to

determine continuous and smooth temporal variation of

amplitudes and phases for a specific tidal component.

b. Independent point scheme and cubic spline
interpolation

Harmonic analysis is a kind of inverse problem to

determine the unknown harmonic parameters with ob-

served tidal (current) data. In practice, the number of

constituents chosen needs to be commensurate with the

length of record and the noise level. Additionally, the

harmonic results obtained by segmented harmonic

analysis are independent of each other. The indepen-

dent point scheme is a kind of methodology to connect

unresolved parameters in the methodology of harmonic

analysis. As a result, it will lead to continuous harmonic

results directly rather than manual interpolations.

The philosophy of the independent point scheme (IPS)

has been put forward in some studies to deal with the

ill-posedness of the inverse problem, for 1D (Zhang and

Lu 2010; Gao et al. 2013) and 2D parameters (Lu and

Zhang 2006; J. Zhang et al. 2011; Jin et al. 2015). Readers

who are interested in this issue are referred to Pan et al.

(2017) and Guo et al. (2017) for more details. The basic

idea of IPS is quite simple; see Fig. 1 for instance.

Assume the harmonic parameters (e.g., amplitude H)

are varying in time and I 5 {x1, x2, . . . , x10} are the

time indices. First, the indices of independent points

(IPs) eI 5 {x1, x4, x7, x10} are a subset of I, which are the

representatives of the parameter space. For conve-

nience, these IPs are selected uniformly in this paper.

Second, the harmonic parameters at IPs (red rhombuses

in Fig. 1) can be calculated through a specific algorithm.

Finally, harmonic parameters on the other points (i.e.,

x2, x3, x5, x6, x8, and x9) can be interpolated between the

IPs. Thus, IPS is a helpful tool to reduce the amount of

computations and to connect adjacent parameters in the

space domain. If a different number of IPs is chosen,

then they are regarded as different IPSs.

Here we use cubic splines to interpolate between the

IPs because there are two main advantages of this

method. One is that the interpolation results can be a

FIG. 1. Sketch illustrates IPS. The x axis has labels of x1 on the left

to x10 on the right.
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pleasingly smooth curve (https://mse.redwoods.edu/darnold/

math45/laproj/Fall98/SkyMeg/Proj.PDF). Another ad-

vantage of cubic spline interpolation is the undetermined

function, and its first two derivatives are continuous.

In this case, we will have a tridiagonal linear system

that is strictly row diagonally dominant and that can

easily find the solution without any difficulty by Gauss

elimination (de Boor 1978). In practice, cubic spline

has been widely used in different research fields

(Schoenberg 1964; Reinsch 1967; de Boor 1978; Wahba

1985; Desquilbet and Mariotti 2010; Lawn et al. 2011;

Malik et al. 2011; Hu et al. 2012; The 1000 Genomes

Project Consortium 2015). Because of the Rayleigh

criterion, it is almost impossible to obtain harmonic

parameters on all sample points. Thus, temporal

variations for the internal tidal harmonic parame-

ters are usually difficult to analyze. As a result, any

function that would effectively correlate all the pa-

rameters would be difficult to obtain and be highly

unwieldy. So, a series of unique cubic polynomials

are fitted between each of the IPs, with the stipulation

that the curve obtained be continuous and appear

smooth (https://mse.redwoods.edu/darnold/math45/laproj/

Fall98/SkyMeg/Proj.PDF).

c. Enhanced harmonic analysis

The CHA algorithm, employing the least squares fit,

treats the amplitude and phase of a tidal constituent and

the mean tidal current as constants for the entire sample

time. In contrast, EHA treats them as functions of time.

Let us first introduce some notations. Assume N $ n . 0

are positive integers. Let {i; i5 0, 1, . . . ,N} be a sequence

and {ik;k5 0, 1, . . . ,n} be the subsequence of {i}. Fromnow

on we denote {ti; i 5 0, 1, . . . , N} as the time index of the

whole time domain. Then {tik; k 5 0, 1, . . . , n}, the sub-

sequence of {ti}, is the time index of IPs.Without confusion,

we denote ~tk b tik in the following paragraphs. The main

idea of EHA can be expressed in the following steps.

Step 1. Several points in the parameter space with

the time index (tilde) of harmonic parameters are

selected as IPs. The harmonic parameters at IPs

for a specific tidal constituent are {A(~tk),f(~tk),S0(~tk);

k 5 0,1, . . . , n}. According to IPS, the time-varying

harmonic parameters A(ti) and f(ti) for a specific

tidal constituent, where i 5 1,2, . . . ,N can be interpo-

lated as a function of A(~tk), and f(~tk), the overall

mean tidal flow S0(ti) can be interpolated as a function

of S0(~tk), which are

fA t
i

� �
; i5 0, 1, . . . ,Ng5F t

i
;A ~t

1

� �
,A ~t

2

� �
, . . . ,A ~t

n

� �� �
,

ff t
i

� �
; i5 0, 1, . . . ,ng5F t

i
;f ~t

1

� �
,f ~t

2

� �
, . . . ,f ~t

n

� �� �
, and

fS
0
t
i

� �
; i5 0, 1, . . . , ng5F t

i
; S

0
~t
1

� �
,S

0
~t
2

� �
, . . . , S

0
~t
n

� �� �
,

where F(ti) denotes the interpolation method and

is a matrix with respect to the time index. To ensure

the smoothness of the time variation for the ampli-

tude and phase, the cubic spline interpolation

method is employed as the F(ti) in this paper.

Step 2. The EHA algorithm finds time-dependent {A(ti),

f(ti), S0(ti); i5 0, 1, . . . , N} by interpolation from their

values at the IPSs. Instead of dealing with harmonic

parameters on all the time indices, we present the EHA

algorithm inwhichA(ti),f(ti), andS0(ti) are interpolated

with A(~tk), f(~tk), and S0(~tk), respectively, based on

step 1. As a result, the number of unknown variables

will be (2J 1 1) 3 (n 1 1) in EHA, where J is the

total number of tidal constituents. Similar to the process

of CHA, the least squares fit method will be employed

to derive the harmonic parameters on IPs, which

are A(~tk), f(~tk), and S0(~tk). Then the time-varying

harmonic parameters—A(ti), f(ti), and S0(ti)—can be

interpolated by means of step 1. The detailed processes

of the two steps will be presented in the following two

subsections.

1) DERIVATION OF FORMULAS FOR THE TIME-
VARYING TIDAL (CURRENT) CONSTANTS

In this part, F(ti) from [A(~tk), f(~tk), S0(~tk)] to [A(ti),

f(ti), S0(ti)] are derivedwith the cubic spline interpolation

method. In the following derivations, as an example of the

interpolation process, one of the harmonic parameters

[A(ti), f(ti), S0(ti)] will be denoted as Hi 5 {f(ti); i 5
0, 1, . . . , N} and one of [A(~tk), f(~tk), S0(~tk)] will be

denoted as ~Hk 5 ff (~tk); k5 0, 1, . . . , ng The detailed

derivations can be found in any reference book or paper

on the cubic spline method (de Boor 1978; https://mse.

redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/

Proj.PDF); so, interested readers may refer to the

appendix. Finally, for a specific t2 [~tk, ~tk11], the cubic

spline transformation from ~H toH can be expressed as

HbF � ~H , (3)

where F is the defined transitionmatrix from ~H toHwith

n rows and n 1 1 columns.

1378 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35

https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF
https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF
https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF
https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF
https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF
https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF
https://mse.redwoods.edu/darnold/math45/laproj/Fall98/SkyMeg/Proj.PDF


2) DETERMINATION OF THE TIME-VARYING

TIDAL (CURRENT) PARAMETERS WITH THE

HARMONIC ANALYSIS METHOD

In this part the time-varying tidal (current) parame-

ters f(t) will be determined using the least squares fitting

method. For traditional harmonic analysis, assume

that a selection procedure has chosen J constituents for

inclusion in the analysis. The next stage is to calculate

the amplitude and phase for the sinusoids representing

each constituent cluster. The basic methodology for

EHA is similar to CHA. For a one-dimensional time

series, the analysis objective is to solve the unknown

variables S0(ti), A
j(ti), and fj(ti) in the following system

of equations:

h(t
i
)5 S

0
t
i

� �
1 �

J

j51

Aj t
i

� �
cos sjt

i
2fj t

i

� �� �
1 r for

i5 0, 1, . . . ,N . (4)

Here h(ti) is the observation at time ti, S0(ti) is the mean

flow at time ti, and s j is the frequency of constituent j;

Aj(ti) and f j(ti) are the amplitude and phase of constit-

uent j at time ti, respectively; r is the observation noise;

and N is the total number of observation time samples.

For convenience, we define

xj(t)bAj(t)3 cos fj(t)
� �

, yj(t)bAj(t)3 sin fj(t)
� �

,

(5)

and

QbðF
0
,F

0
, . . . ,F

0

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{ðN11Þ=n

; F
1
,F

1
, . . . ,F

1

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{ðN1 1Þ=n

; ::::::; F
n21

,F
n21

, . . . ,F
n21

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ðN1 1Þ=n ÞT

b c
0
t
i

� �
, c

1
t
i

� �
, . . . , c

n
t
i

� �� �

for i 5 0, 1, . . . ,N. Term Q is an extended matrix of

F with N 1 1 rows and n 1 1 columns, and ck(ti) is

the (k 1 1)th column of Q. Now we can apply

the results in section 2c(1). Using Eq. (5), we can

get fxj(ti); i5 0, 1, . . . , Ng5Qfxj(~tk); k5 0, 1, . . . , ng.
Putting them into Eq. (4), we can obtain

h(t
i
)5Q

i
3 S

0
(~t

k
)T 1 �

J

j51

fQ
i
� [xj(~t

k
)]T cos(sjt

i
)1Q

i
� [yj(~t

k
)]T sin(sjt

i
)g 1 r, for i5 0, 1, . . . ,N , (6)

where Qi denotes the (i 1 1)th row in matrix Q. The solution for Eqs. (6) can be obtained as follows.

Naturally, for observation time ti (i5 0, 1, 2, . . . ,N), Eqs.

(6) can be written as

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�
n

k50

[c
k
(t
0
)S

0
(~t

k
)]1 �

J

j51

[c
0
(t

0
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0
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1
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0
)xj(~t

1
)1 � � � 1 c

n
(t
0
)xj(~t

n
)] cos(sjt
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N
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)] cos(sjt

N
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N
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0
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1
(t
N
)yj(~t

1
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n
(t
N
)yj(~t

n
)] sin(sjt

N
)1 r5 h(t

N
) .

(7)

There are (2J 1 1) 3 (n 1 1) unknown variables and

N 1 1 linear equations in Eq. (7). This system should

have a solution based on the least squares fitting method

so long as N $ (2J 1 1) 3 (n 1 1).

The statistical properties of the least squares solution

can be found in any analysis of variance or regression

model text (e.g., Foreman and Henry 1989). According

to their theory, the values of fxj(~tk)g and fyj(~tk)g, as well
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as fS0(~tk)g for k 5 0, 1, . . . , n and j 5 1, 2, . . . , J, can

be obtained. Then by Eq. (5), amplitudes fAj(~tk)g and

phases ffj(~tk)g for constituent j on IPs ~tk can be calcu-

lated. Finally, the harmonic parameters at the time in-

dex of the whole time domain are obtained using Eq. (3).

In another words, the harmonic parameters with tem-

poral variations are obtained.

d. Segmented harmonic analysis

In this section the segmented harmonic analysis

(SHA) algorithm, amethod to find evidence of temporal

variations in harmonic parameters, is presented as the

comparison of EHA. This method is similar to the short-

term harmonic analysis (Jay and Flinchem 1999). As-

sume we have a time series of data with a total time

length of T. Actually, CHA treats the whole series as

one part. Thus, there is only one amplitude and phase

for a specific tidal constituent and one mean flow during

the whole time domain. The general idea of SHA is to

perform CHA on the subtime series of data. The main

process of SHA is presented as follows.

First, the whole time domain is divided into P parts

uniformly. As a consequence, the length for every part is

T0 5 T/P. The value of P can be assigned according to

the length of data. Note that the length T0 should be

large enough to ensure the decomposition of a specific

number of tidal constituents. Second, CHA is carried

out in each part of data. So, we get a constant amplitude

Ai and phase fi of a specific tidal constituent and amean

flow for the ith part of data.

As a result, the time-varying harmonic parameters are

described by a series of parameters obtained by SHA. In

practice, the SHA results can be interpolated between the

central times of each SHA record to obtain time-varying

and smoothing harmonic parameters. Jay and Flinchem

(1999) have demonstrated, however, that segmented har-

monic analysis will sometimes give unstable or erroneous

results as the window is stepped through a nonstationary

data record (Jay and Kukulka 2003). So, this method will

be used only as a reference in this paper.

e. Constituent selection and significance of estimates

There are more than 146 possible tidal constituents

that can be included in the traditional tidal analysis, of

which 45 are astronomical in origin (main constituents)

and the remaining constituents are shallow water con-

stituents (Foreman 1977), which may be insignificant for

internal tides. Moreover, resolving a large number of

constituents for a nonstationary signal (e.g., internal

tides) is meaningless. Deciding whichmajor constituents

should be included in the first stage of a harmonic

analysis is not easy (Foreman et al. 2009) and usually

begins by considering the so-called Rayleigh criterion

(Godin 1972), which is theminimal resolvable frequency

separation of T21 between neighboring constituents in a

time series of length T. The Rayleigh separation equa-

tion can be written as

js
2
2s

1
j.T21R , (8)

where s1 and s2 are major constituent frequencies

(cycle/unit time), and R is the Rayleigh constant. For

harmonic analysis on observational time series, R is

commonly set to 1 (Foreman and Henry 1989).

However, Matte et al. (2013) indicated that the

Rayleigh criterion cannot be directly used in the non-

stationary case because it may be too exclusive for low

frequencies or too inclusive for higher frequencies (Jay

and Flinchem 1999). Munk and Hasselmann (1964) ar-

gued that unlike the pure spectral lines for stationary

signals, nonstationarity adds a continuous spectral line

to cusp-like-shaped peaks that reflect the intensity to

modulate the tides. The width of these cusps reflects the

intensity of modulation of the tidal components (Matte

et al. 2014). So, even though the close frequencies can be

resolved by a Rayleigh criterion based on the length of

record (Godin 1972), their overlapping cusps will lead to

erroneous estimates of tidal properties (Godin 1999;

Colosi and Munk 2006). To solve the dilemma, Matte

et al. (2013) defined a new Rayleigh criterion for their

tidal-fluvial model. According to the research of Munk

and Hasselmann (1964), the width of the cusps formed

around the tidal spectral lines reflects the convolution

from low-frequency spectrum of the nonlinear forcing.

In this paper we borrow from the work of Matte et al.

(2013) and redefine the Rayleigh criterion of harmonic

analysis for nonstationary internal tides. For two tidal

frequencies s1 and s2, the minimal allowable frequency

separation Ds is presented as js2 2 s1j . Ds,

js
2
2s

1
j.max(T21R,Ds

c
), (9)

where T21R is based on the classical harmonic analysis

and Dsc is the allowable frequency separation for non-

stationary signals. The quantity Dsc can be determined

based on the definition of Munk and Hasselmann (1964):ðDsc

0

P(s) dsð‘
0

P(s) ds

5 « , (10)

where P(s) is the power spectrum of the current data

and « is a user-defined criterion representing the por-

tion of the total spectrum power. After selecting the

constituent, the constituent amplitudes and phases

were carefully inspected to ensure that the included
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constituents have a physical meaning. Under the as-

sumption that CHA accurately represents the average

frequency content of the time series, comparisons with

the time-averaged tidal harmonics given by CHA are

carried out. Any constituents exhibiting nonphysical

characteristics will be eliminated from the analyses.

Closely related to theRayleigh criterion is the post facto

determination of the significance of the estimates. There

are various approaches to do this, and the continuous

wavelet transform (CWT) method might be an efficient

and accurate approach (Jay and Flinchem 1997) to show

which constituent is significant in its species. The CWT

results mostly provide us the qualitative view of constitu-

ent significance. In the quantitative view, the signal-to-

noise ratio (SNR), which is the square of the ratio of the

tidal amplitude to amplitude error, is often regarded as the

indicator of the constituent significance (Pawlowicz et al.

2002; Matte et al. 2013). Since the amplitude and its errors

are functions of time in this paper, the SNR should also

vary in time. So, the significance of constituents is assessed

based on the time-averagedSNR.Themodernway to deal

with nonstationary mapping on this issue is through

resampling techniques, such as the ‘‘parametric boot-

strap’’ algorithm (Efron and Tibshirani 1994) used in this

paper. The bootstrap technique is a straightforwardway to

derive estimates of standard errors and confidence inter-

vals for complex estimators of complex parameters of the

distribution. Although for most problems it is impossible

to know the true confidence interval, the bootstrap tech-

nique is asymptotically more accurate than the standard

intervals obtained using sample variance and assumptions

of normality (DiCiccio and Efron 1996).

The SNR is actually the overall quantitative estimation

for each constituent during the time domain. Time-varying

quantitative confidence intervals will also be provided as a

reference of uncertainties. According to Chavanne et al.

(2010), uncertainties are estimated by a bootstrap tech-

nique, which is the same as in the SNR calculations. First,

the tidal currents estimated byEHAare removed from the

original observed time series to obtain the residual cur-

rents, or noise. Then, 300 synthetic noise realizations are

generated by resampling the time series of residual cur-

rents. Third, tidal currents are added back to each noise

realization, from which a new estimate of tidal currents is

obtained by means of least squares fit. Finally, 95% con-

fidence intervals on the harmonic parameters are obtained

from histograms of the 300 realizations.

3. Numerical example

In this section a numerical example is described to

demonstrate that EHA can reduce the error of HA and

reveal the time-varying amplitudes, phases, and mean

flow for the tidal current data. First, we simulate a time

series of simple tidal current affected by noise. Then,

three HA algorithms—CHA, EHA, and SHA—are

applied to the tidal current data. Finally, the analysis

results are preliminarily discussed to examine the per-

formances of the three algorithms.

To sufficiently resemble real current data, we first exact

a 1-yr time series of current data starts from 0000 UTC

22 October 2010 from the mooring current observations

located in the SCS (detailed in next section) as a refer-

ence to construct the synthetic tidal signal. Second, tra-

ditional harmonic analysis using the T_TIDE package

(Pawlowicz et al. 2002) is performed on the series of data to

obtain the average values as well as the 95% confidence

interval (CI) estimates of eight tidal constituents’ properties

and the mean tidal current. The signal-to-noise ratios

(SNR) of six significant constituents including M2, K1, S2,

O1, K2, and P1 (sorted by SNR) are bigger than 1, indi-

cating they are significant. But according to the Rayleigh

criterion, including K2 and P1 will influence the results of

S2 andK1.Besides, the SNR forK2 andP1 aremuch smaller

to the other constituents. So they are excluded from the

numerical experiments. Finally, we construct a synthetic

tidal current signal composed of a time-varying nontidal

current U0 using the four significant constituents; the

Gaussian noiseh, where themean value ism5 0ms21; and

the variance s 5 0.01m2s22. All eight components are

described by time-varying amplitudes and phases. With a

sample interval ofDt, the tidal currentU at time ti5 t01 iDt
can be described as follows:

U(t
i
)5U

0
(t
i
)1h(t

i
)

1�
4

m51

A
m
(t

i
) � cos[2pu

m
iDt2f

m
(t
i
)] , (11)

where the temporal variationalAm,fm, andU0 are given

by the following equations:

A
M2

(t
i
)5 0:111 0:013 sin½2F(i)�,

f
M2

(t
i
)5 359:271 5:683 cos½F(i)�,

A
S2
(t
i
)5 0:041 0:013 cos½2F(i)�,

f
S2
(t
i
)5 74:911 16:893 cos½F(i)�,

A
O1
(t
i
)5 0:041 0:023 sin½F(i)�,

f
O1
(t

i
)5 267:821 21:893 cos½2F(i)�,

A
K1
(t
i
)5 0:091 0:023 sin½F(i)�,

f
K1
(t
i
)5 14:941 10:143 cos½2F(i)�,

U
0
(t
i
)520:04261 0:023 cos½2F(i)�,

where F(i)5pi � Dt/8760.
(12)
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Three HA algorithms—CHA, EHA, and SHA—are

applied to the artificial current data. The constituent sets

used for CHA, EHA, and SHA, which are M2, S2, O1,

and K1, are exactly the same for comparison. Note that

the time-varying mean flow will also be resolved. Four

different EHAs that employ different IPSs are applied

to examine the accuracy and feasibility of this algorithm.

As for the SHA, a total of 12-subtime series of data are

selected by step 1 in section 2c; the time length for each

subtime series is one month. The phases are reduced to

Greenwich values, and no nodal modulations are in-

cluded in the three algorithms.

All harmonic results, including the current ampli-

tudes, phases, and the time-varying mean flow (not

shown in figures), with differentmethods, are calculated,

but the results from only M2 and K1 are shown in Fig. 2

as examples. Harmonic results for all the selected con-

stituents are provided in the appendix for readers who

are interested. From now on, we denote the IPSn as the

IPS that concludes a total number of n in EHA. For

clarity, we present only the results of IPS13 of the EHA

algorithm in the figure. On the one hand, these results

clearly show the deficiency of CHA. It is obvious that the

amplitude and phase constants computed byCHA fail to

reveal the temporal variations of harmonic parameters

for the two given tidal constituents. On the other hand,

the harmonic results for SHAmarked step changes with

time, which is obviously not a good choice to reveal the

continuous and smooth temporal variations of harmonic

parameters. To acquire time-varying harmonic param-

eters, the harmonic results for SHA are interpolated

with cubic splines between the central times of each

SHA record (splined SHA). The mean difference be-

tween EHA and splined SHA lies in the fact that the

former is using the data from the entire record to de-

termine the harmonic parameters at any particular point

with the spline coupling included. In another words, the

time length to determine the harmonic parameters for

SHA is the length of each segment (one month for this

issue), while the time length for EHA is the length of the

whole record (12 months for this issue). The root-mean-

square errors (RMSEs) of the harmonic parameters,

including the current amplitudes (dA), phases (df), and

mean flow (dS0), as well as those between the tidal

predictions (TP) and the simulated data (SD), which are

an indicator of model-data misfit for all algorithms

(dData), are calculated and listed in Table 1.

Based on the statistics in Table 1 and the curves in

Fig. 2, the performances of the three HA algorithms are

evaluated in the following paragraph. In terms of the

RMSE for the six tidal current amplitudes (dA), phases

(df), and mean flow (dS0), the splined SHA and EHA

FIG. 2. Given values and HA results of current amplitudes (a) K1 and (b) M2, and (c),(d) their respective phases. The horizontal gray

lines are the given values; the black line is the CHA, the red is the EHA, the solid blue is the SHA (Splined), and the dotted-stepped blue

is the SHA (Stepped).
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are competitive, and both of them have much better

performances than CHA. Moreover, the errors vary

among experiments employing EHA. The values of

dData for SHA and EHA are smaller than that for

CHA. All the evidence indicates the significant advan-

tages of SHA and EHA over CHA.

This simple example clearly demonstrates that both

SHA and EHA (employing different IPSs) have the

ability to improve tidal current estimates for a synthetic

signal, compared with CHA. The harmonic parameters

of EHA and the splined results of SHA are smoothed;

so, they are more reasonable in physics. However,

Figs. 3–5 do not inspire a lot of confidence in the

smoothness of the data. This is mainly because of two

reasons. First, any form ofHAprovides average pictures

of the harmonic parameters rather than instantaneous

results. Second, there is an inevitable trade-off between

time and frequency resolution when we select the can-

didate constituents to be analyzed, and there is no single

answer when the data are nonstationary. Moreover,

different IPSs in EHA may result in different harmonic

results. To investigate this issue, a variety of EHAs with

different IPSs are performed on the same artificial

current data. When the number of IPs exceeds 21, the

harmonic results begin to reveal unnecessary oscilla-

tions compared to the prescribed curves (for figures not

shown in the paper; please refer to the supplementary

file, file JTECH-D-16-0239s1), and the RMSEs for am-

plitudes and phases begin to rise. This phenomenon

is easy to understand from the introductions in section

2c(2), because the increase in the IP number means the

increase in the undetermined parameters in the har-

monic analysis. Thus, it will lead to more uncertainty to

solve the harmonic linear Eqs. (6). Moreover, in the area

of computational statistics, a lot of effort was put for-

ward to prevent overfitting of curves by reducing the

number of knots required to represent the original curve

with a given degree of accuracy (Qamar 1993). So, it is

not a good decision to use an abundant number of IPs in

EHA mainly for two reasons. First, the increase in the

number of IPs fails to result in a decrease in the error

estimates when the number of IPs exceeds 13. In other

words, it is inefficient to use an excessive number of IPs

in the method of EHA. Second, the physical meaning of

IPS has been clearly clarified in section 2b. Thus, re-

dundant IPs applied in EHA mean dramatic temporal

changes for estimated tidal current amplitudes and

phases all the time, which is inconsistent with the

FIG. 3. Originalmeridional current data obtained by threeADCPs. The position andworking

time for ADCPs are horizontal black lines. The direction of the vertical black arrows shows the

type ofADCP (upward arrows for the uplookingADCP and double arrows for the side-looking

ADCP). The color scale on the right starts at 0.5 at the top and extends to20.5 at the bottom in

0.1m s21 increments.

TABLE 1. Estimated RMSE for three HA algorithms (m s21).

Method CHA SHA EHA (IPS5) EHA (IPS9) EHA (IPS13) EHA (IPS16)

dA(m s21) 7.5375 3 1023 4.2762 3 1024 3.1251 3 1024 1.6911 3 1024 2.4813 3 1024 3.1037 3 1024

df(8) 14.5872 0.6607 0.5812 0.0481 0.0166 0.0108

dS0(m s21) 1.4143 3 1022 3.1636 3 1024 7.6191 3 1024 1.4031 3 1024 1.4208 3 1024 1.6839 3 1022

dData(m s21) 9.0291 3 1022 8.7061 3 1022 3.3853 3 1022 3.3370 3 1022 3.3364 3 1022 3.3359 3 1022
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physical movements of tidal currents. A notable fact in

the current data and the wavelet spectrum is that in-

ternal tides do change abruptly. However, we are lim-

ited in our ability to resolve this by the Heisenberg

principle (Heisenberg 1927).

4. Application to the mooring observations

In the following section, the performances of the three

HA algorithms—CHA, SHA and EHA—are compared

when applied to the mooring current observations in the

SCS. A 14-month (26 April 2011–24 June 2012) time

series of current data (original data shown in Fig. 3) is

picked out from 2.5 yr of current data obtained by

acoustic Doppler current profilers (ADCP). The moor-

ing was deployed during the South China Sea Internal

Wave Experiment (Zhang et al. 2013; Guan et al. 2014)

and are part of the South China Sea Moored Ob-

servation Network of China. The data before 2200 UTC

17 April 2011 were obtained from a 75-kHz uplooking

ADCP at 435m, data from 0000 UTC 30 April 2011

to 0600 UTC 30 March 2012 were obtained from a

FIG. 4. (a) Map of the northeastern portion of the SCS and position of ADCP mooring site (blue star near 218N,

1188E). (b) Hourly zonal component u (m s21) of the observed mooring current data from 26 Apr 2011 to 24 Jun

2012. The dashed line indicates the 200-m depth of the current data used in this section.
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75-kHz side-looking ADCP at 485m, and data after

1300 UTC were obtained from a 75-kHz uplooking

ADCP located at 630m. As is shown in Fig. 4a, the

mooring site was located at 218070N, 1178530E. Thewater
depth at the mooring site is 968m, and the depth of the

available current data measured by the two ADCPs

ranged from the sea surface to 940 and 640m with a

vertical interval of 5m, respectively. Current measure-

ments were recorded with a precision of 1 3 1024m s21

and a time interval of 1 h. The current data located at

the 200m are selected to exclude not-a-number (NaN)

values. Because the main purpose of this section is to

examine the capability and feasibility of EHA, only

the meridional component is employed. Figure 4b

shows the hourly component u, which will be used to

examine the capability of the three HA algorithms

mentioned above.

We start with applying the three HA algorithms to the

1-yr mooring current data from 26 April 2011 to 25 April

2012 at a depth of 200m. As introduced in section 2, the

whole process for EHA, including constituent selection and

significant analyses, can be executed in the following steps:

Step 1. Calculate the minimal allowable frequency

separation Ds based on the length of record and

the power spectra of the three HA algorithms—

CHA, EHA, and SHA—are applied to time series

(« 5 0.3; see section 2e for the definition).

Step 2. Apply CHA to the time series in order to

evaluate the time-averaged amplitudes and phases

for the constituents. Include constituents whose

frequencies are under the limit of Ds. Exclude those

constituents with nonphysical characteristics.

Step 3. Apply EHA to the time series and obtain

harmonic parameters with time variations.

Step 4. Perform CWT with the wavelet package in

MATLAB (Torrence and Compo 1998) to the time

series to acquire local wavelet power spectra

throughout the sample time.

Step 5. Calculate the SNR as a function of time using

the parametric bootstrap algorithm (Chavanne

et al. 2010). The time-averaged SNR can be treated

as the overall quantitative indicator for the signifi-

cance of constituents during the time domain. More-

over, time-varying quantitative 95% confidence

intervals are also calculated by the parametric

bootstrap algorithm.

The minimum allowable frequency separation based

on the power spectra in step 1 of the current time series

is 0.0356 cycles per day (cpd), which means that only

constituents separated by about 28 days per cycle would

be selected. The result of this criterion argues that in-

cluding more constituents within each ‘‘monthly’’ group

would be inconsistent with the variability in the signal.

So, the time length for each segment (one month) in

FIG. 5. The local wavelet power spectrum (color shading) of the current data time series using the Morlet wavelet. The colored lines

represent the following tidal components: M2 (black dashed), S2 (red dashed), K1 (blue dashed), O1 (solid black), N2 (solid red), and

MO3 (solid blue).
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SHA is reasonable for the current data. With regard to

the constituent selection, we first choose a total of 13

candidates out of the significant constituents based on

the SNR of the CHA results. Then, the candidates are

filtered with Ds. Finally, six constituents—M2, S2, K1,

O1, N2, and MO3—along with a time-varying mean flow

are selected to be determined in the EHA. At the same

time, these constituents are also used in CHA and SHA

for consistency. The time length of each segment part in

SHA is one month, and the harmonic results from SHA

are interpolated with cubic splines in this section. Note

that among the eight principal constituents, P1, Q1, and

K2 failed to pass the two barriers. The reason is either it

is too insignificant throughout the time interval to be

selected (Q1 and P1) or it fails to pass the examination of

Ds (K2). While investigating internal tides with mooring

observations around this area, most researchers pay at-

tention to the four principal constituents, M2, S2, K1, and

O1 (J. Zhang et al. 2011; Lee et al. 2012; Guo et al. 2012;

Xu et al. 2013; Gao et al. 2015; Gao et al. 2016), and our

result are consistent with previous findings.

Figure 5 gives details about the analysis of the wavelet

power spectrum using the Morlet wavelet. Please note

that the minimum plotting level in the figure is 0.005,

which means a wavelet power smaller than 0.005 will not

be plotted. As can be clearly seen in the figure, most of

the power is concentrated within the diurnal band

around 12h and the semidiurnal band around 24h.

Moreover, overtides between the diurnal and semidi-

urnal constituents, such as MO3, can be found near the

third diurnal band. This is mainly because of the non-

linear distortions of the major astronomical tidal con-

stituents. More solid evidences will be provided in the

spectra (Fig. 11). With wavelet analysis, one can see

variations in the frequency of occurrence and amplitude

of the current. The wavelet power spectrum reveals

quasi-periodic oscillation because of the modulation of

tidal forcing. Moreover, this agrees with other studies

(Z. Zhang et al. 2011; Lee et al. 2012; Guo et al. 2012; Xu

et al. 2013; Gao et al. 2015; Gao et al. 2016) and gives

confidence in the constituent selection.

As introduced in section 2e, the so-called colored

bootstrap analysis (Pawlowicz et al. 2002) is applied to

determine the significance. Figure 6 demonstrates the

time variations and the time-averaged values of SNRs

obtained by bootstrap analysis (B-SNRs) for six con-

stituents. Note that because of the stochastic nature of

the bootstrap procedure, values of B-SNRs may change

slightly in repeated analyses. Compared with the results

from CHA, the top four significant constituents are ex-

actly the same. However, there exist prominent time

variations among the B-SNRs of the six constituents.

The M2 and K1 constituents are much more significant

than others are most of the time. On the contrary, values

of B-SNR forMO3 ramble at a low level for the majority

of the time.

FIG. 6. Time variations and (inset) time-averaged values of B-SNR for six constituents: M2 (solid red), K1 (solid black), S2 (solid green),

O1 (dashed red), N2 (dashed blue), and MO3 (dashed green).

1386 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35



Figure 7 shows the time-varying current amplitudes of

four principal tidal constituents—M2, K1, S2, and O1—

obtained by the three HA algorithms. Note that four

IPSs in EHA are applied in this case but only the results

of IPS5 and IPS13 are illustrated for clarity. The phases

are reduced to Greenwich values, and no nodal modu-

lations are included in the three algorithms. The annual-

averaged current amplitudes are obtained by CHA

(black lines in Fig. 7). Generally, the amplitudes of M2

and K1 are larger than those of S2 and O1. And as for

the harmonic results obtained from SHA and EHA, it

should be noted that the seasonal variabilities of the

current amplitudes of the four principal tidal constitu-

ents are significant. Moreover, the overall trends of

the current amplitudes for EHA and SHA are consis-

tent. Taking Fig. 7b for instance, the current amplitude

for K1 is relatively small in winter and larger in

summer, which is consistent with the analysis results by

Xu et al. (2013). The phase results and time-varying

mean flow are presented in the appendix. As introduced

in section 2e, the uncertainties are estimated by the

bootstrap technique (Chavanne et al. 2010), and the

95% confidence intervals for all the harmonic parame-

ters are calculated as quantitative estimations for all

constituents. The 95% confidence intervals for the zonal

current amplitudes of the four principal constituents

obtained by EHA with IPS13 are provided in the

appendix as an example. Readers whomay be interested

in this issue are referred to the supplementary file for the

other results. The confidence intervals at both ends of

the harmonic parameters are larger than those in the

middle of the time series. This is mainly caused by the

interpolations of cubic splines. Thus, an important note

for users is that the harmonic results at both ends of the

sample time should be used with great care. More evi-

dence of this issue will be presented in the following

discussions. The time-varying phases of the four con-

stituents and the mean flow calculated by different al-

gorithms are also presented in the appendix (see Figs.

A3, A4). The overall variations in the results from all

algorithms show good consistency with each other,

which exhibit clear seasonal variations. To compare the

harmonic results with different algorithms in detail, the

ranges of the current amplitudes and dData are calcu-

lated and listed in Table 2. CHA does not have the

ability to obtain time-varying current amplitudes, so

variations of the four principal constituents are all zero.

As for the results of the other two algorithms, the K1

component has the greatest variation, whereas S2 has

the smallest. Various IPSs in EHA result in apparent

differences in the ranges of the current amplitudes,

which is as expected. On the other hand, the value of

dData varies among the algorithms. Compared with

CHA, the application of SHA and EHA reduces the

values of dData. With the increase of IPs used in EHA,

dData descends slightly from 0.1481 to 0.1402ms21 and

FIG. 7. Results of the time-varying zonal current amplitudes obtained by three HA algorithms at 200-m depth. The four principal tidal

constituents are (a)M2, (b)K1, (c) S2, and (d)O1: CHA (solid black), EHA (IPS5) (green), EHA (IPS13) (red), SHA (Spined) (solid blue),

and SHA (Stepped) (dashed blue). Note that ‘‘SHA (Stepped)’’ indicates that the time length of each segment part is one month.
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the decline rate becomes smaller (more evidence can be

found in Fig. 8). Although the magnitudes of dData for

SHA and EHA are the same with that for CHA, the

application of SHA and EHA acquires current ampli-

tudes with temporal variations. Specifically, with the aid

of EHA, the current amplitudes are presented with

continuous temporal variations. Additionally, SHA will

be more limited to select candidate constituents, as the

record length for this algorithm (one month in this case)

is much smaller than that in EHA (1 yr in this case). It is

true that all the three algorithms are limited by noise and

nonstationary behavior, but EHA is the best choice to

determine current amplitudes with temporal variations.

Nevertheless, the performances of EHA with different

IPSs vary with respect to ranges of the current ampli-

tudes, whereas the values of dData are of the same

magnitude (Fig. 8). As a consequence, how to choose an

optimal IPS for EHA is still a challenge.

In the following paragraphs, the capability of EHA is

evaluated and the optimal IPS for EHA is selected. In

the catalog of smoothing splines, the problem of ‘‘knot

selection’’ helps determine the optimal number and lo-

cations of knots. Qamar (1993) argued that any method

used to determine the knots for cubic spline fitting

should guarantee the small error between the fitted

curve and the original curve, as well as the retainment of

the main features of the original curve with a small

number of knots. However, the automatic knot selection

for EHA is so complicated that it is beyond the scope of

this paper. So, we would just leave it to the next paper.

Nevertheless, we will examine the two aspects to de-

termine the optimal IPSmanually under the guidance of

Qamar (1993). The first one is the value of dData, which

defines the time-averaged difference between observa-

tions and the reconstructed time series. The second one

is the averaged standard deviation for different time

offsets to evaluate the capability of EHA. Figure 8

presents the values of dData with respect to the num-

ber of IPs. Compared to the results of CHA and splined

SHA, the values of dData obtained with EHA are rel-

atively small. The descent rate is getting smaller when

the number of IPs increases. Besides, the results of the

numerical examples in section 3 indicate that the

abundant number of IPs in EHA may lead to unneces-

sary oscillations compared to the real temporal varia-

tions. As a result, the selection of IPS should be careful

enough to avoid overfitting of the harmonic parameters.

In this paper we present a method to evaluate the ca-

pability of EHA quantitatively. Based on the analysis

given above, the optimal EHA should reveal temporal

trends for the current amplitudes of all tidal constitu-

ents. In other words, harmonic results from the optimal

EHA should be consistent for all selected time series

with the same time window. Take the 14 months of

current data at the depth of 200m as an example. As

shown in Fig. 9, three subsets of current data are cut out,

each containing 12 months of current data. The start

month for series 1 (TS1), series 2 (TS2), and series 3

(TS3) are the first, second, and third month of the

14 months of data, respectively. The optimal IPS for

FIG. 8. Values of dData (m s21) with respect to the number of IPs.

TABLE 2. Ranges of estimated current amplitudes for all HA methods and the root-mean-square model-data misfits (m s21).

Method CHA SHA (12*) EHA (IPS5) EHA (IPS9) EHA (IPS13) EHA (IPS16)

RangeM2 0 0.2030 0.1270 0.0836 0.1102 0.1307

RangeK1 0 0.2228 0.1414 0.0928 0.1639 0.1609

RangeS2 0 0.1290 0.0658 0.0619 0.0728 0.0723

RangeO1 0 0.1229 0.0941 0.0690 0.1059 0.1160

dData 0.2328 0.2224 0.1481 0.1453 0.1423 0.1402

* Note that there are 12 segments used in SHA, which is consistent with EHA (IPS13).

1388 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35



EHAwill be chosen with the following steps. First, EHA

with a specific IPS is applied to each time series and the

current amplitudes during the corresponding subset are

obtained. Second, the consistency among the three

groups of obtained current amplitudes during the over-

lap time is calculated using

S5 �
T

t51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
�
3

i51

 
A

i,t
2

1

3
�
3

i51

A
i,t

!2
vuut , (13)

where T is the amount of sample points in the shadow

region and Ai,t refers to the value of current amplitude

for series i on the tth sample moment. Actually, the

value of S is the averaged standard deviation (ASD) for

the three time series inside the shadow region. The

smaller the ASD is, the more consistent the harmonic

results will be with each other. Finally, by comparing

values of S obtained by different EHAs, the capability of

EHA is assessed and the optimal EHA can be selected.

Figure 10 shows consistencies among the M2 current

amplitudes at the depth of 200m obtained by different

IPSs applied in EHA. Moreover, we present the ASDs

of different IPSs for the four constituents in Table 3. The

values of ASD vary with different IPS and different

constituents. But the results of IPS13 are interestingly

the smallest among the four constituents. Take the re-

sults of M2 as an example. The ASD for IPS13 is 0.0013,

which is the smallest among the six experiments. It is

86.22% smaller than that for IPS5, 66.49% smaller than

FIG. 9. Sketch illustrating the method to determine the optimal EHA. The shadow region indicates the overlap time of the three series.

FIG. 10. Comparison of harmonic results for the M2 constituent at 200-m depth with different EHAs. There are (a) 5, (b) 7, (c) 9, (d) 13,

(e) 16, and (f) 21 IPs in the experiments. The TS1 (blue line), TS2 (red line) and TS3 (green line) refer to series 1, 2 and 3, respectively.
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that for IPS7, 50.35% smaller than that for IPS9, 72.34%

smaller than that for IPS16, and 77.28% smaller than

that for IPS21. This distinct advantage convinces us that

EHA with IPS13 can be chosen as the optimal HA

method for current data at 200m. Another fact found in

the figure is that the harmonic results are less credible at

both ends compared to the middle parts because of the

interpolation of cubic splines. In another words, the

harmonic results are more reliable during the middle

parts of the sample time.

In Fig. 11 the current fit obtained from the three HA

algorithms are compared to the observed power spectra.

On account of nonlinear distortions of the four constit-

uents, overtides such as MO3 can be discovered in the

observed spectrum near the third and fourth diurnal

bands, but their spectra are much smaller than those in

diurnal and semidiurnal bands (note the log scale of

the y axis in Fig. 11a). The overview of the spectra

(Fig. 11a) demonstrates that all three algorithms reveal

the spectrum peaks at the bands around the selected

six principal constituents. The performances of EHA

and splined SHA are better than that of CHA, which

indicates the necessity to apply HA with time-varying

harmonic parameters. When we zoom in to the low-

frequency band (Fig. 11b), the comparison between the

results of the three algorithms tells us that the EHA fit

encompasses more of the observed signal energy than the

other two algorithms at low frequencies. In the diurnal

and semidiurnal bands (Figs. 11c,d), the EHA fit almost

perfectly coincides with the observed spectrum and re-

produces the cusp-like shapes formed around the dominant

frequencies—M2, S2, K1, and O1—with great accuracy,

compared with results of the splined SHA and CHA. The

results of the power spectra indicate thatM2, S2, K1, andO1

are definitely the most significant tidal constituents in this

region during the observing time. It agrees well with other

studies in the same region. Moreover, this is additional ev-

idence that shows the capability ofEHAtoobtainharmonic

parameters and reveals the real observation data.

The overall temporal variations of amplitudes for all

constituents are significant during the selected time pe-

riod, which indicates obvious seasonal variations for the

four constituents. Based on the overall magnitude of

amplitudes, the dominant constituents are M2 and K1 at

200-m depth at this observation site, which is consistent

with studies around this area by other studies (Duda and

Rainville 2008; Klymak et al. 2011; Lee et al. 2012;

Ma et al. 2013; Vlasenko et al. 2010; Xu et al. 2013).

TABLE 3. ASDs of different IPSs for the four constituents.

IPS5 IPS7 IPS9 IPS13 IPS16 IPS21

M2 0.0095 0.0039 0.0026 0.0013 0.0047 0.0058

K1 0.0065 0.0053 0.0118 0.0023 0.0085 0.0097

S2 0.0076 0.0022 0.0041 0.0011 0.0037 0.0045

O1 0.0085 0.0035 0.0060 0.0013 0.0048 0.0065

FIG. 11. (a) Power spectra of the observed signal (gray line) and current fit for all methods: CHA (black), EHA (IPS13) (red), and Splined

SHA (blue). Zoomed-in views of the power spectra for the (b) low-frequency, (c) diurnal and (d) semidiurnal bands.
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Moreover, the temporal variabilities for these four

principal tidal constituents are apparent, so the har-

monic constants obtained by CHA cannot reveal the

details of variabilities for internal tidal currents.

5. Summary

This paper presented an enhanced harmonic analysis

algorithm that obtains harmonic parameters with contin-

uous temporal variations. The whole process of method-

ology for this algorithm is derived based on the IPS and

cubic spline interpolation method. Using numerical ex-

amples, the accuracy of EHA is verified. It has the ability

to reveal the continuous and smooth temporal variations

of harmonic parameters for different tidal constituents of

the prescribed current data. The mean difference between

EHA and SHA lies in the fact that the former is using

the data from the entire record to determine the harmonic

parameters at any particular point with the spline coupling

included. Then it is applied to 14 months of current data

from a mooring located at the continental shelf of the

northeastern SCS. Different IPSs lead to different har-

monic results. We determine the optimal IPS for a time

series by evaluating the misfits between the tidal predic-

tions and the simulated data, as well as the consistency

among different IPSs. Similar with CHA, EHA is carried

out without the consideration of the dynamics of internal

tides, assuming only the candidate tidal constituents. The

advantage is to allow post facto analysis on the dynamics

without any dynamic assumptions about the harmonic

analysis. As a result, this approach may not be entirely

adequate for strongly nonstationary or dynamically com-

plex issues like internal solitary waves. In summary, EHA

is a new viewpoint and a more precise method than CHA

to view the temporal variations of harmonic parameters

for internal tides (currents). While this method is applied

here to a scalar time series of currents, it could be applied

to any scalar time series, such as elevation, temperature, or

salinity. Moreover, whether it can be extended to a two-

dimensional vector time series [e.g., (u, y)] with surface

splines or the two components should be treated separately

with regular spline method requires a detailed dynamic

analysis. When processes are linear, the combined har-

monic analysis on two components make sense. But this

does not necessarily apply in the nonlinear world. Future

works should be done to solve the automatic selection of

the IPS and to apply this method to observing data at

different locations of the world’s oceans.
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APPENDIX

Derivations and Time Variabilities

a. Derivation of cubic spline interpolation on
harmonic parameters

In this part the interpolation formulas F(ti) from

[A(~tk), f(~tk)]to [A(ti), f(ti)] are derived with the cubic

spline interpolation method. In the following deriva-

tions, A(ti) and f(ti) will be denoted asHi 5 {f(ti); i5 0,

1, . . . ,N}, and A(~tk) f(~tk) will be denoted as ~Hk 5
ff (~tk); k5 0, 1, . . . , ng.We start by dividing a closed

time interval [a, b], which is the range of t, into n parts

uniformly as follows:

a5 ~t
0
, ~t

1
, � � �,~t

n21
, ~t

n
5 b . (A1)

The approach to mathematically model the shape of

such elastic rulers fixed by n1 1 kt (1 kt5 0.51m s21) is

to interpolate between each pair of knots (~tk21, ~Hk21)

and (~tk, ~Hk) with cubic polynomials. In another words,

the main task of this subsection is to derive the formu-

lation of {Hi; i 5 0, 1, . . . , N} with values on IPs, that is,

f ~Hk; k5 0, 1, . . . , ng.
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At times ~tk and ~tk11, for each subtime interval

[~tk, ~tk11], we denote the one-stage derivative of f(t) as

f 0(~t
k
)5m

k
, f 0(~t

k11
)5m

k11
, k5 0, 1, . . . ,n2 1. (A2)

Based on the spline interpolation method, for each

t2 [~tk, ~tk11], f(t) can be written as

f (t)5
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k11
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k11
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m
k11

. (A3)

Next, we will try to expressmk as a function of ~Hk so that

f(t) can be written as a function of ~Hk for each t2 [a, b].

Based on Eq. (A3), let dt 5 ~tk11 2 ~tk and take a two-

stage derivative of f(t) for t. Then, we get

f 00(t)5
�
6

dt2
2

12

dt3
ð~t

k11
2 tÞ
	
~H
k
1

�
6

dt2
2
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dt3
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k11
2 tÞ
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k
2

�
2

dt
2

6

dt2
ðt2 ~t

k
Þ
	
m

k11
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(A4)

In fact, the two-stage derivative of the cubic piecewise

function f 00(t) should be continuous, which means the

two-stage progressive derivative, that is,

f 00(~t1k )52
6

dt2
~H
k
1

6

dt2
~H
k11

2
4

dt
m

k
2

2

dt
m

k11
, (A5)

and the left-hand derivative, that is,

f 00(~t2k )5
6

dt2
~H
k21

1
6

dt2
~H
k
1

2

dt
m

k21
1

4

dt
m

k
, (A6)

are equal: f 00(~t1k )5 f 00(~t2k ).
Then, we get the system of linear equations for the

one-stage derivative m:

(12a
k
)m

k21
1 2m

k
1a

k
m

k11
5b

k
, for

k5 1, 2, . . . ,n2 1, (A7)

in which ak 5 1/2 and bk 5 (3/2dt)( ~Hk11 2 ~Hk21).

Add natural boundary conditions, f 00(~t0)5 f 00(~tn)5 0,

which can be written as8>><>>:
2m

0
1m

1
5

3

dt
ð ~H

1
2 ~H

0
Þ

m
n21

1 2m
n
5

3

dt
ð ~H

n
2 ~H

n21
Þ
, (A8)

in Eqs. (A7). Then, we get a system of linear equations

that has a unique solution. For convenience, the system

can be reduced to matrix form, that is,

A
a
M5b

b
~H , (A9)

where

A
a
5

2666666664

2 1 0 0 � � � 0 0 0

0:5 2 0:5 0 � � � 0 0 0

0 0:5 2 0:5 � � � 0 0 0

..

. ..
. ..

. ..
. � � � ..

. ..
. ..

.

0 0 0 0 � � � 0:5 2 0:5

0 0 0 0 � � � 0 1 2

3777777775
(n11)3(n11)

,

(A10)

M5 (m
0
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1
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n
)T, ~H5 ( ~H

0
, ~H

1
, . . . , ~H

n
)T, and

b
b
5

3

2dt

2666666664

22 2 0 0 � � � 0 0 0

21 0 1 0 � � � 0 0 0

0 21 0 1 � � � 0 0 0

..

. ..
. ..

. ..
. � � � ..

. ..
. ..

.

0 0 0 0 � � � 21 0 1

0 0 0 0 � � � 0 22 2

3777777775
(n11)3(n11)

.

(A11)

Then, Eq. (A9) can be easily solved and the matrix for

the one-stage derivative M can be finally expressed as a

function of ~H:

M5 (A21
a b

b
) ~H . (A12)

Combining Eqs. (A3) and (A12), we obtain the time-

varying tidal (current) constant f(t) for any t2 [a, b] as a

linear combination of constants at IPs, that is, f ~Hk; k5
0, 1, . . . , ng. The function of f(t) will be represented in the

following form, which is convenient for formula derivations

in the next section. For a specific t2 [~tk, ~tk11],
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;

the subscript marked k1 1 indicates the (k1 1)th row of

the corresponding matrix; and F is the transformation

matrix with n rows and n 1 1 columns.

b. Time variabilities of phases, mean flows, and
confidence intervals

Accompanying Fig. 2, we provided the harmonic re-

sults of all four selected constituents in section 3 in

Figs. A1 andA2. Similar to the examples ofM2 andK1 in

the text, all the algorithms except for CHA have the

ability to reveal time-varying signals of harmonic pa-

rameters from the prescribed series. EHA with IPS13

generally performs better than the other algorithms.

Accompanying Fig. 7, the phases for different constitu-

ents are obtained by the three algorithms. Figure A3

illustrates the current phases as functions of time for

the four principal constituents, which areM2, K1, S2, and

O1. The values of the constant phases are 129.58, 114.88,
183.38, and 294.88 for the corresponding constituents,

respectively. To compare between different results, all

the phases are adjusted by adding or subtracting 3608. It
is a noteworthy phenomenon that the differences be-

tween time-varying phases and the referenced constant

phases are different for the four constituents. In general,

the EHA results show that M2 and K1 exhibit small

ranges of variations. The differences between them and

the CHA results are also small. However, the ranges and

differences are both larger for the S2 and O1 constitu-

ents. During most of observing time, M2 and S2 are in

phase, indicating their current amplitude being added to

each other. On the contrary, K1 and O1 are out of phase,

indicating their current amplitude being decreased to

each other. Although this issue is interesting and note-

worthy, it is beyond the scope of present study. For now

we only provide the estimates of phases obtained by the

three HA algorithms in this paper.More analyses will be

carried out in the near future.

FIG. A1. Given values andHA results of the current amplitudes for the four selected tidal constituents: (a)M2, (b) S2, (c) O1, and (d) K1.

The horizontal gray lines are the given values; the black line is the CHA, the red is the EHA, the solid blue is the SHA (Splined), and the

dotted-stepped blue is the SHA (Stepped).
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Figure A4 presents the time-varying mean flow

obtained by different HA algorithms. The result

of CHA provides us the overall mean flow, which

is 20.0508m s21. However, according to the temporal

variations in the figure, the mean flow at the depth of

200m at this observation site has obvious annual varia-

tions. Despite the overfitting for cubic spline in-

terpolation, the variations of the mean flow will be

FIG. A3. Results of the time-varying zonal current phases obtained by three HA algorithms at 200-m depth. The principal tidal con-

stituents (a) M2, (b) K1, (c) S2, and (d) O1. The horizontal black lines are the CHA, the green is the EHA (IPS5), the red is the 1EHA

(IPS13), the blue is the SHA (Splined), and the dashed-stepped gray is the SHA (Stepped).

FIG. A2. As in Fig. A1, but for the current phases.
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approximately 0.1800ms21, which is quite large com-

pared with the overall mean flow. The general vari-

ations obtained by SHA and EHA are consistent

with each other. The overall mean flow is stronger in

summer than in winter, which has been investigated

by Xu et al. (2013).

With a bootstrap technique, the time-varying 95%

confidence intervals for the harmonic parameters are

calculated and illustrated in Fig. A5. Only results ob-

tained by EHA (IPS13) are provided as an example in

the figure. Note that the confidence intervals at both

ends of the harmonic parameters are larger than those in

FIG. A5. Results of the 95%CI (gray band) for time-varying zonal current amplitudes obtained by EHA (IPS13) at

200-m depth. The principal tidal constituents (a) M2, (b) K1, (c) S2, and (d) O1.

FIG. A4. As in Fig. A3, but for the mean flows.
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the middle of the time series, which means less confi-

dence than the results in the middle parts. Thus, an

important note for users is that the harmonic results at

both ends of the sample time should be used with

great care.
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